Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of capillary forces on the non-stationary fall of a drop in an unbounded fluid

  • 23 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    J. Hadamard, “Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux,” C. R. Acad. Sci.,152, No. 25 (1911).

  2. 2.

    W. Rybczynski, “Uber die fortschreitende Bewegung einer flussigen Kudel in einem zahen Medium,” Bull. Int. Acad. Polon. Sci. Cracovia. Ser. A, No. 1 (1911).

  3. 3.

    V. G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959).

  4. 4.

    F. Sy and E. N. Lightfoot, “Transient creeping flow around fluid spheres,” Am. Inst. Chem. Eng. Jour.,17, No. 1 (1971).

  5. 5.

    A. S. Povitskii and L. Ya. Lyubin, Fundamentals of the Dynamics and Heat and Mass Exchange of Fluids and Gases in Conditions of Weightlessness [in Russian], Mashinostroenie, Moscow (1972).

  6. 6.

    Yu. K. Bratukhin, “Thermocapillary drift of droplets of a viscous fluid,” Izv. Akad. Nauk SSSR, Mekh. Zhid. Gaza, No. 5 (1975).

  7. 7.

    J. Happel and G. Brenner, Hydrodynamics at Small Reynolds Numbers [Russian translation], Mir, Moscow (1976).

  8. 8.

    S. S. Dukhin, “Dynamic adsorption layer and the Marangoni-Gibbs effect,” in: Contemporary Theories of Capillarity: Towards 100 Years of the Gibbs Capillary Theory [in Russian], A. I. Rusanov, and F. Ch. Gudrich, eds., Khimiya, Leningrad (1980).

  9. 9.

    A. L. Gonor and V. Ya. Rivkind, “Dynamics of drops,” in: Science and Technology Summaries, Mechanics of Gases and Fluids Series [in Russian], Vol. 17, VINITI, Moscow (1982).

  10. 10.

    Yu. P. Gupalo, A. D. Polyanin, and Yu. S. Ryazantsev, Mass and Heat Exchange for Reacting Particles with Flux [in Russian], Nauka, Moscow (1985).

  11. 11.

    L. K. Antanovskii and B. K. Kopbosynov, “Nonstationary thermocapillary drift of drops of a viscous fluid,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1986).

  12. 12.

    L. K. Antanovskii, “Effect of capillary forces on nonstationary motion of a drop in a uniform fluid,” in Hydromechanics and Heat and Mass Exchange in Conditions of Weightlessness [in Russian], Akad. Nauk SSSR Sib. Otd., Novosibirsk (1988).

  13. 13.

    A. E. Rednikov and Yu. S. Ryazantsev, “Nonstationary motion of a drop under the action of capillary and volume forces,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1991).

  14. 14.

    V. G. Babskii, N. D. Kopachevskii, A. D. Myshkis, et al., The Hydromechanics of Weightlessness [in Russian], Nauka, Moscow (1976).

  15. 15.

    L. K. Antanovskii, “Symmetrization of the equations of capillary fluid dynamics,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1990).

  16. 16.

    L. G. Napolitano, “Thermodynamics and dynamics of pure interfaces,” Acta Astronautica,5, No. 9 (1978).

  17. 17.

    J. W. Gibbs, Thermodynamics, Statistical Mechanics [Russian translation], Nauka, Moscow (1982).

  18. 18.

    S. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics, Am. Elsevier, New York (1962).

Download references

Author information

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 6, pp. 60–65, November–December, 1991.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Antanovskii, L.K. Influence of capillary forces on the non-stationary fall of a drop in an unbounded fluid. J Appl Mech Tech Phys 32, 875–880 (1991). https://doi.org/10.1007/BF00850631

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Capillary Force
  • Unbounded Fluid