Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bursting and structure of the turbulence in an internal flow manipulated by riblets

Abstract

The buffer layer of an internal flow manipulated by riblets is investigated. The distributions of the ejection and bursting frequency from the beginning to the middle part of the buffer layer, together with high moments of the fluctuating streamwise velocity,u′, and its time derivative are reported. The profiles of the ejection and bursting frequency are determined and compared using three single point detection schemes. The effect of the riblets on the bursting mechanism is found confined in a localized region in the buffer layer. The multiple ejection bursts are more affected than the single ejection bursts. The skewness and flatness factors of theu′ signal are larger in the manipulated layer than in the standard boundary layer. That, also holds true for the flatness factor of the time derivative, but the Taylor and Liepman scales are not affected. The spectrum of theu′ signal is altered at the beginning part of the viscous sublayer.

This is a preview of subscription content, log in to check access.

Abbreviations

u τ :

Friction velocity

ν :

Viscosity

l v ;f v :

wall scalesv/u τ;u τ 2 /v

y :

Vertical distance to the wall

Δz :

Spanwise extent

(+):

Variable normalized with wall scales

u :

Velocity;u′=Turbulence intensity

h, s :

Height and width of the riblets

f e :

Ejection frequency

f b :

Bursting frequency

f BME :

Frequency of the Bursts with Multiple Ejection

f BSE :

Frequency of Single Ejection Bursts

S andS du′/dt :

Skewness factor ofu′ and its time derivative

F u′ andF du′/dt :

Flatness factor ofu′ and its time derivative

SBL:

Standard (non-manipulated) Boundary Layer

MBL:

Manipulated Boundary Layer

BME:

Bursts with Multiple Ejections

BSE:

Bursts with Single Ejections

VITA:

Variable Interval Time Averaging technique

u′−l:

u′-level technique

mu :

Modifiedu′-level technique

References

  1. Antonia, R.A., Bisset D.K. and Browne L.W.B., Effect of Reynolds number on the topology of organized motion in a Turbulent Boundary Layer.J. Fluid Mech. 213 (1990) 267.

  2. Bacher E.V., Smith, C.R., A combined visualization-anemometry study of the turbulent drag reducing mechanism of triangular micro-grove surface modifications.AIAA paper AIAA-85-0548 (1985).

  3. Bechert, D.W., Bartenwerfer, M. and Hoppe, G., In:Proc. 15th ICAS, London (1986).

  4. Blackwelder, R.F. and Kaplan, R.E.,J. Fluid Mech. 76 (1976) 89.

  5. Blackwelder, R.F. and Haritonidis, J.H., Scaling of the bursting frequency in turbulent boundary layers.F. Fluid Mech. 132 (1983) 87.

  6. Bogard, D.G., Ph.D. Thesis, Purdue University (1982).

  7. Bogard, D.G. and Tiederman, W.G., Burst detection with single point measurements.J. Fluid Mech. 162 (1986) 389.

  8. Bogard, D.G. and Tiederman, W.G., Characteristics of ejections in turbulent channel flow.J. Fluid Mech. 179 (1987) 179.

  9. Bogard, D.G. and Coughran, M.T., Bursts and ejections in a LEBU-modified boundary layer. In:Seventh Symposium on Turbulent Shear Flows, [Toulouse, France, 1987.]

  10. Choi, K.S., A new look at the near-wall structure. In: Matthieu, J. and Compte-Bellot, G. (eds.), Berlin: Springer-Verlag (1986).

  11. Choi, K.S., The wall pressure fluctuations of modified turbulent boundary layer with riblets. In: Liepmann H. W. and Narasimha, R. (eds),Turbulence Management and Relaminzaization, Berlin: Springer-Verlag (1988).

  12. Choi, K.-S., Near-wall structure of a turbulent boundary layer with riblets.J. Fluid Mech. 298 (1989) 417.

  13. Choi, K.-S., Effects of longitudinal pressure gradients on turbulent drag reduction with riblets. In: Coustols, E. (ed.),Turbulence Control by Passive Means. Dordrecht: Kluwer Academic Publishers (1990).

  14. Coustols, E., Behaviour of internal manipulators: riblet models in subsonic and transonic flows.AIAA Paper 89-0963 (1989).

  15. Coustols, E. and Cousteix, J., Experimental investigation of turbulent boundary layers manipulated with internal devices: riblets. In: Gyr, A. (ed.),Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

  16. Fulachier, L., Djenidi, L. and Anselmet, F., Couches Limites sur Parois Rainurées Longitudinalement, riblets. 24 ème Colloque d'Aérodynamique Appliquée, Poitiers (1987).

  17. Gallagher, J.A. and Thomas, S.W., Turbulent boundary layer characteristics over streamwise grooves.AIAA Paper 84-2185 (1984).

  18. Gaudet, L., Properties of riblets at supersonic speed.Appl. Sci. Res. (1989) 245–254.

  19. Kim, H.T., Kline, S.J. and Reynolds, W.C., The production of turbulence near a smooth wall in a turbulent boundary layer.J. Fluid Mech. 50 (1971).

  20. Klewicki, J.C. and Falco, R.E., On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes.J. Fluid Mech. 219 (1990) 119.

  21. Kline, S.J. and Robinson, S.K., Turbulent boundary layer structure: progress, status, and challenges. In: Gyr, A. (ed.),Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

  22. Kuo, A.Y.S. and Corrsin, S.,J. Fluid Mech. 50 (1971) 285.

  23. Luchik, T.S. and Tiederman, W.G., Timescale and structure of ejections and bursts in turbulent channel flows.J. Fluid Mech. 174 (1987) 529.

  24. Hooshmand, D., Youngs, R. and Wallace, J.M., An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes.AIAA paper AIAA-83-0230 (1983).

  25. Maruyama, S. and Tanaka, H., The effect of spatial restriction on the inner-layer structure of wall turbulence.J. Fluid Mech. 177 (1987) 485.

  26. Offen, G.R. and Kline, S.J., A proposed model of the bursting process in turbulent boundary layers.J. Fluid Mech. 62 (1975) 2.

  27. Rohr, J.J., Reidy, L.W. and Anderson, G.W. In:Drag Reduction 89 Davos: Ellis Harwood Ltd. (1989).

  28. Pulles, C.J.A., Krishna Prasad, K. and Nieuwstadt, F.T.M., Turbulence measurements over longitudinal micro-grooved surfaces.Appl. Sc. Res. 46 (1989) 197–208.

  29. Pulles, C.J.A., Krishna Prasad K. and Nieuwstadt, F.T.M., Simultaneous flow visualization and LDA studies over longitudinal micro-grooved surfaces. In: Coustols, E. (ed.),Turbulence Control by Passive Means. Dordrecht: Kluwer Academic Publishers (1990).

  30. Pulvin, Ph., Contribution à l'étude des parois rainurées pour les écoluements internes avec gradient de pression positif. Thèse de Doctorat; EPFL, Lausanne, No. 809 (1989).

  31. Rice, S.O., Mathematical analysis of random noise.Bell Syst. Tech. J., 24 (1945) 46.

  32. Robinson, S.K., Kline, S.J. and Spalart, P.R., Quasi-coherent structures in the turbulent boundary layer: Part II. Verification and new information from a numerically simulated flat plate layer. In:New Wall Turbulence: [1988 Zaric Memorial Conference]. Hemisphere (1988).

  33. Robinson, S.K., The kinematics of turbulent boundary layer structure. NASA Technical Memo. 103859 (1991).

  34. Savill, A.M., Effect on turbulent boundary layer structure of longitudinal riblets alone and in combination with outer devices. In: Charnay, L. (ed.),Flow Visualizations IV. Hemisphere (1987).

  35. Savill, A.M., Drag reduction by passive devices, a review of some recent developments. In: Gyr, A. (ed.),Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

  36. Schwarz-van Manen, A.D., Thijssen, J.H.H., Nieuwvelt, C., Krishna Prasad, K. and Nieuwstad, F.T.M., The bursting process over drag reduction grooved surfaces. In: Gyr, A. (ed.),Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

  37. Sreenivasan, K.R., Prabhu, A. and Narasimha, R., Zero-crossings in turbulent signals.J. Fluid Mech. 137 (1983) 137.

  38. Tardu, S., Ecoulements Instationnaires en Canal; Réponse des Structures Cohérentes. Ph.D. Thesis; Université J. Fourier-Grenoble-1 (1988).

  39. Tardu, S. and Binder, G., In:Proceedings of 7th Turbulent Shear Flows. [1989, Stanford.] (1989).

  40. Tardu, S. and Binder, G., Response of bursting to imposed velocity oscillations. Submitted toJ. Fluid Mech.

  41. Tardu, S. and Binder, G., Review: effect of the OLDs on near wall coherent structures; discussion and need for future work. In: Choi, K.-S. (ed.),Recent Developments in Turbulence Management. Dordrecht: Kluwer Academic Publishers (1991).

  42. Tardu, S., Investigation of the Structure of the Turbulence in an Internal Flow Manipulated by Riblets. Report IMHEF T-91-19; Swiss Federal Institute of Technology, Lausanne; 1015, Lausanne, Switzerland (1991).

  43. Tardu, S., Binder, G., A new method to identify bursting events with single point measurements. In:Eddy Structure Identification in Free Turbulent Shear Flows [IUTAM Symposium, 12–14 October 1992, Poitiers, France], (1992).

  44. Tiederman, W.G., Eulerian detection of turbulent bursts. In:Proceedings of Zaric International Seminar on Near Wall Turbulence [16–20 May 1988], (1988).

  45. Truong, T.V. and Pulvin, Ph., Influence of wall riblets on diffuser flow.Appl. Sci. Res. 46 (1989) 217–227.

  46. Ueda, H. and Hinze, J.O., Fine-structure turbulence in the wall region of a turbulent boundary layer.J. Fluid Mech. 67 (1975) 67.

  47. Wallace, J.M. and Balint, J.L., Viscous drag reduction using streamwise aligned riblets: survey and new results. In: Liepmann, H.W. and Narasimha, R. (eds),Turbulence Management and Relaminarization. Berlin: Springer-Verlag (1988).

  48. Walsh, M.J., Turbulent boundary layer drag reduction using riblets.AIAA Paper AIAA-82-0169 (1982).

  49. Walsh, M.J. and Anders, J.B., Jr., Riblet/LEBU research at NASA Langley.Appl. Sci. Res. 46 (1989) 255–262.

  50. Wilmarth, W.W. and Sharma, L.K., Study of turbulent structure with hot wires smaller than viscous length.J. Fluid Mech. 142 (1984) 142.

Download references

Author information

Correspondence to B. Tanguay.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tardu, S., Truong, T.V. & Tanguay, B. Bursting and structure of the turbulence in an internal flow manipulated by riblets. Appl. Sci. Res. 50, 189–213 (1993). https://doi.org/10.1007/BF00850557

Download citation

Keywords

  • Boundary Layer
  • Single Point
  • Middle Part
  • Time Derivative
  • Buffer Layer