Pediatric Nephrology

, Volume 1, Issue 3, pp 502–508 | Cite as

Renal glucosuria

  • J. Brodehl
  • B. S. Oemar
  • P. F. Hoyer
International Symposium on Hereditary Nephropathies Heidelberg, 6–8 October, 1986


Normal urine contains small amounts of glucose, called basal glucosuria, and other carbohydrates. Increased amounts of glucose beyond the basal excretion rates i.e. frank glucosuria, reflect reduced activity of tubular glucose reabsorption. Clinically, there are two conditions which are known to appear with a primary disturbance of epithelial glucose transport: intestinal glucose-galactose malabsorption and benign familial renal glucosuria. In the latter, both the renal threshold for glucose and maximal tubular glucose reabsorption are diminished. The degree of glucosuria is variable; the most severe defect demonstrates minimal glucose threshold values and extremely low levels of maximal glucose reabsorption (type 0). The moderate and mild types show variable reductions of both functional parameters. It is questionable whether these should be subdivided into type A and type B glucosurias. Data in the literature reveal that two distinct entities do not exist, but that there is instead a continuous transition from low to normal values. The defect is transmitted genetically, either in an autosomal dominant or autosomal recessive manner. It seems plausible that the different defects might be produced either by mutations on different gene loci, or by multiple alleles of the same gene locus that determines the synthesis of the glucose carrier.

Key words

Renal glucosuria Glucose threshold Maximal tubular glucose reabsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brodehl J (1978) Renal glucosuria. In: Edelmann CM (ed) Pediatric kidney disease. Little, Brown & Co., Boston: pp 1036–1047Google Scholar
  2. 2.
    Wen S-F (1986) Glycosuria. In: Gonick HC, Buckalew VM (eds) Renal tubular disorders. Dekker, New York, Basel, pp 159–199Google Scholar
  3. 3.
    Middleton JE, Griffith WJ (1957) Rapid colorimetric micro-method for estimating glucose in blood and CSF using glucose oxidase. Br Med J 2: 1525–1527Google Scholar
  4. 4.
    Peterson JI, Young DS (1968) Evaluation of the hexokinase/ glucose-6-phosphate dehydrogenase method of determination of glucose in urine. Anal Biochem 23: 301–316PubMedGoogle Scholar
  5. 5.
    Elsas LJ, Rosenberg LE (1969) Familial renal glucosuria: a genetic reappraisal of hexose transport by kidney and intestine. J Clin Invest 48: 1845–1854PubMedGoogle Scholar
  6. 6.
    Keller DM (1968) Glucose excretion in man and dog. Nephron 5: 43–66PubMedGoogle Scholar
  7. 7.
    Renschler HE, Weicker H, von Bayer H (1965) Die obere Normgrenze der Glukose-Konzentration im Urin Gesunder. Dtsch Med Wochenschr 90: 2349–2353PubMedGoogle Scholar
  8. 8.
    Bachmann KD, Dominick H (1970) Über die Ausscheidung von Glukose und Fruktose im Harn der reifen Neugeborenen (enzymatische Bestimmungen). Monatsschr Kinderheilkd 118: 290–292PubMedGoogle Scholar
  9. 9.
    Arant BS jr (1978) Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 92: 705–712PubMedGoogle Scholar
  10. 10.
    Brodehl J (1978) Renal hyperaminoacidurias. In: Edelmann CM (ed) Pediatric kidney disease. Little, Brown & Co., Boston, pp 1047–1079Google Scholar
  11. 11.
    Smith H (1958) The kidney. Oxford University Press, LondonGoogle Scholar
  12. 12.
    Reubi F (1963) Clearance tests in clinical medicine. Charles C. Thomas, Springfield, IllinoisGoogle Scholar
  13. 13.
    Soler NG, Malins JM (1971) Prevalence of lucosuria in normal pregnancy—a quantitative study. Lancet I: 619–621Google Scholar
  14. 14.
    Elsas LJ, Rosenberg LE (1979) Renal glycosuria. In: Earley LE, Gottschalk CW (eds) Strauss and Welt's diseases of the kidney, 3rd edn. Little, Brown and Co., Boston, pp 1021–1028Google Scholar
  15. 15.
    De Marchi S, Cecchin E, Basile A, Proto G, Donadon W, Jengo A, Schinella D, Jus A, Villalta D, De Pauli P, Santini G, Tesio F (1984) Close genetic linkage between HLA and renal glucosuria. Am J Nephrol 4: 280–286PubMedGoogle Scholar
  16. 16.
    McPhaul JJ, Simonaitis JJ (1968) Observations on the mechanisms of glucosuria during glucose loads in normal and nondiabetic subjects. J Clin Invest 47: 702–711PubMedGoogle Scholar
  17. 17.
    Stonestreet BS, Rubin L, Pollak A, Cowett RM, Oh W (1980) Renal function of low birth weight infants with hyperglycemia and glucosuria produced by glucose infusions. Pediatrics 66: 561–567PubMedGoogle Scholar
  18. 18.
    Walker AM, Bott PA, Oliver J, Mac Dowell MC (1941) The collection and analysis of fluid from single nephrons of the mammalian kidney. Am J Physiol 134: 580–595Google Scholar
  19. 19.
    Stolte H, Hare D, Boylan JW (1972) D-Glucose and fluid reabsorption in proximal surface tubule of the rat kidney. Pflüers Arch 334: 193–206Google Scholar
  20. 20.
    Wen SF (1976) Micropuncture studies of glucose transport in the dog: mechanism of renal glycosuria. Am J Physiol 231: 468–475PubMedGoogle Scholar
  21. 21.
    Brodehl J, Franken A, Gellissen K (1972) Maximal tubular reabsorption of glucose in infants and children. Acta Paediatr Scand 61: 413–420PubMedGoogle Scholar
  22. 22.
    Tudvad F (1949) Sugar reabsorption in prematures and full term babies. Scand J Clin Lab Invest 1: 281–283Google Scholar
  23. 23.
    Marble A (1971) Nondiabetic melituria. In: Marble A, White P, Bradley RF, Krall LP (eds) Joslin's diabetes mellitus. 11th edn. Lea and Febiger, PhiladelphiaGoogle Scholar
  24. 24.
    Elsas LJ, Hillman RE, Patterson JH, Rosenberg LE (1970) Renal and intestinal hexose transport in familial glucosegalactose malabsorption. J Clin Invest 49: 576–585PubMedGoogle Scholar
  25. 25.
    Froesch ER, Winegrad AI, Renold AF (1957) Die tubuläre Nierenfunktion bei verschiedenenFormen des renalen Diabetes mellitus. Helv Med Acta 24: 548–555PubMedGoogle Scholar
  26. 26.
    Oemar BS, Byrd DJ, Brodehl J (1987) Complete absence of tubular glucose reabsorption: a new type of renal glucosuria (type 0). Clin Nephrol 27: 156–160PubMedGoogle Scholar
  27. 27.
    Woolf LI, Goodwin BL, Phelps CE (1966) Tm-limited renal tubular reabsorption and the genetics of renal glucosuria. J Theor Biol 11: 10–21PubMedGoogle Scholar
  28. 28.
    Nielsen AL (1948) On the mechanism of glycosuria. I. Acta Med Scand 130: 219–231Google Scholar
  29. 29.
    Reubi F (1984) Nierenkrankheiten, 3rd edn. Huber, Bern, Stuttgart, Wien, p 270Google Scholar
  30. 30.
    Taggart JV (1956) Combined clinics on disorders of renal tubular function. Am J Med 20: 448–461PubMedGoogle Scholar
  31. 31.
    Monasterio G, Oliver J, Muiesan G, Pardelli G, Marinozzi V, MacDowell M (1964) Renal diabetes as a congenital tubular dysplasia. Am J Med 37: 44–61PubMedGoogle Scholar
  32. 32.
    Krane SM (1978) Renal glycosuria. In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 1607–1617Google Scholar
  33. 33.
    Hjarne VA (1927) Study of orthoglycaemic glucosuria with particular reference to its hereditability. Acta Med Scand 67: 422–571Google Scholar
  34. 34.
    Horowitz L, Schwarzer L (1955) Renal glycosuria. J Pediatr 47: 634–639PubMedGoogle Scholar
  35. 35.
    Khachadurian AK, Khachadurian LA (1964) The inheritance of renal glycosuria. Am J Hum Genet 16: 189–194PubMedGoogle Scholar
  36. 36.
    Elsas LJ, Busse D, Rosenberg LE (1971) Autosomal recessive inheritance of renal glycosuria. Metabolism 20: 968–975PubMedGoogle Scholar
  37. 37.
    Lestradet H, Labrune B, Duval C, Deschamps I (1979) Le diabete renal. A propos de 103 observations chez l'enfant. Arch Fr Pediatr 36: 760–766PubMedGoogle Scholar
  38. 38.
    Bradley SE, Bradley GP, Tyson CJ, Curry JJ, Blake WD (1950) Renal function in renal diseases. Am J Med 9: 766–798PubMedGoogle Scholar
  39. 39.
    Leonardi P, Ruol A, Munari R (1960) Morphological aspects of renal gluycosuria. Am J Med Sci 239: 721–727PubMedGoogle Scholar
  40. 40.
    Robertson JA, Gray CH (1953) Renal function tests in renal glucosuria including observations during pregnancy. Lancet II: 15–16Google Scholar
  41. 41.
    Lambert PP (1954) A study of the mechanism by which toxic tubular damage changes the renal threshold. In: Lewis AAG, Wolstenhome GEW (eds) Ciba Foundation Symposium on the Kidney. Little, Brown and Co., Boston, pp 79–95Google Scholar

Copyright information

© IPNA 1987

Authors and Affiliations

  • J. Brodehl
    • 1
  • B. S. Oemar
    • 1
  • P. F. Hoyer
    • 1
  1. 1.Department of Pediatric Nephrology and Metabolic DisordersChildren's Hospital, Hannover Medical SchoolHannover 61Germany

Personalised recommendations