Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chlorophylla biosynthetic routes and chlorophylla chemical heterogeneity in plants

Summary

A six-branched chlorophylla biosynthetic pathway instead of a four-branched pathway has been proposed as being responsible for the formation of chlorophylla in green plants. The several biosynthetic routes that make up the pathway have been described as leading to the formation of ten chemically different groups of chlorophylla species. The latter differ from one another by one or more of the following modifications: (a) by having a vinyl or ethyl group at position 4 of the macrocycle, (b) by the nature of the long-chain fatty alcohols at position 7 of the macrocycle, and (c) by having a 6-membered lactone ring instead of a 5-membered cyclopentanone ring. The chemical structure of several of the metabolic intermediates of that pathway and of some of the chlorophylla species have now been determined by primary chemical derivatization methods coupled to spectrofluorometric, nuclear magnetic resonance and mass spectral analyses. The formation of highly organized photosynthetic membranes in which some of the chlorophyll α molecules are specifically oriented is ascribed to the multiplicity of chlorophyll biosynthetic routes which result in the formation of multiple chlorophyll α chemical species. Proper orientation of chlorophyll in the photosynthetic membranes is visualized as being controlled by peripheral group modifications that either modulate the polarity of the Chl chromophore or control the magnitude of the net positive charge on the central Mg atom. Finally it is proposed that in addition to the proper orientation of chlorophylla, chemical heterogeneity of the chlorophyll chromophores in the photosynthetic reaction centers is mandatory for efficient charge separation, and proper vectorial electron transfer.

This is a preview of subscription content, log in to check access.

Abbreviations

ALA:

δ-aminolevulinic acid

Chl:

chlorophyll

Chlide:

chlorophyllide

Chl(ide):

a mixture of Chl and Chlide

Coprogen:

coproporphyrinogen III

Dicot:

dicotyledonous

DV:

divinyl

HPLC:

high pressure liquid chromatography

LWMP:

longer wavelength metalloporphyrins, the putative intermediates between MPE and Pchl(ides)

Mg-Proto:

Mg-protoporphyrin IX

MPE:

Mg-protoporphyrin IX monoester

monocot:

monocotyledonous

MS:

mass spectroscopy

MV:

monovinyl

NMR:

nuclear magnetic resonance

PSI:

photosystem I

PSII:

photosystem II

Proto:

protoporphyrin IX

Protogen:

protoporphyrinogen IX

Pchlide:

protochlorophyllide

Pchl:

protochlorophyll

Pchl(ide):

a mixture of Pchlide and Pchl

RC:

reaction center

SW:

short wavelength

Urogen:

uroporphyrinogen III.

References

  1. 1.

    Govindjee and Govindjee, R., 1975. Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 1–49, Academic Press, New York.

  2. 2.

    Castelfranco, P. A. and Beale, S. I., 1981. The Biochemistry of Plants (Stumpf, P. K. and Conn, E. E., eds.), Vol. 8, pp. 376–421, Academic Press, New York.

  3. 3.

    Granick, S., 1950. J. Biol. Chem. 183: 713–730.

  4. 4.

    Rebeiz, C. A., Belanger, F. C., Cohen, C. E. and McCarthy, S., 1979. Ill. Res. 21: 3–4.

  5. 5.

    Belanger, F. C. and Rebeiz, C. A., 1979. Biochem. Biophys. Res. Commun. 88: 365–372.

  6. 6.

    Rebeiz, C. A., Belanger, F. C. McCarthy, S. A., Freyssinet, G., Duggan, J. X., Wu, S. M. and J. R. Mattheis, 1981. Photosynthesis. Proc. Int. Congr. Photosynth., 5th, 1980. (Akoyunoglou, G., ed.), Vol. V, pp. 197–212, Int. Sci. Services, Jerusalem.

  7. 7.

    Rebeiz, C. A., 1982. Chemtech. 12: 52–63.

  8. 8.

    Rebeiz, C. A. and Lascelles, J., 1982. Photosynthesis: Energy Conversion by Plants and Bacteria (Govindjee, ed.), Vol. I, pp. 699–780, Academic Press, New York.

  9. 9.

    Rebeiz, C. A. and Daniell, H., 1982. 4th Symposium on Biotechnology in Energy Production and Conservation (Scot, C. D., ed.), pp. 413–439, John Wiley and Sons, New York.

  10. 10.

    Stoll, A., and Wiedemann, E., 1950. Fortschr. Chem. Forsch. 2: 538–608.

  11. 11.

    Rebeiz, C. A. and Castelfranco, P. A., 1973. Annu. Rev. Plant Physiol. 24: 129–172.

  12. 12.

    Rebeiz, C. A., Smith, B. B., Mattheis, J. R., Cohen, C. A. and McCarthy, S. A., 1978. Chloroplast Development (Akoyunoglou, G. and Argyroudi-Akoyunoglou, eds.), pp. 59–76. Elsevier/North-Holland Biomedical Press, Amsterdam.

  13. 13.

    Belanger, F. C. and Rebeiz, C. A., 1980. Plant Sci. Lett. 18: 343–350.

  14. 14.

    Bogorad, L., 1966. The Chlorophylls (Vernon, L. P. and Seely, G. R., eds.), pp. 481–510, Academic Press, New York.

  15. 15.

    McCarthy, S. A., Belanger, F. C. and Rebeiz, C. A., 1981. Biochemistry 20: 5080–5087.

  16. 16.

    Rebeiz, C. A., Yaghi, M., Abou-Haidar, M. and Castelfranco, P. A., 1970. Plant Physiol. 46: 57–63.

  17. 17.

    Mattheis, J. R. and Rebeiz, C. A., 1977. Arch. Biochem. Biophys. 184: 189–196.

  18. 18.

    Belanger, F. C. and Rebeiz, C. A., 1982. J. Biol. Chem. 257: 1360–1371.

  19. 19.

    McCarthy, S. A., Mattheis, J. R. and Rebeiz, C. A., 1982. Biochemistry 21: 242–247.

  20. 20.

    Smith, B. B. and Rebeiz, C. A., 1979. Plant Physiol. 63, 227–231.

  21. 21.

    Belanger, F. C. and Rebeiz, C. A., 1980. Biochemistry 19, 4875–4883.

  22. 22.

    Belanger, F. C., Duggan, J. X. and Rebeiz, C. A., 1982. J. Biol. Chem. 257: 4849–4858.

  23. 23.

    Rebeiz, C. A., Bazzaz, M. B. and Belanger, F. C., 1978. Chromatogr. Rev. 4: 8–10.

  24. 24.

    Wu, S. M. and Rebeiz, C. A., 1982. Plant Physiol. 69: S-394.

  25. 25.

    Belanger, F. C. and Rebeiz, C. A., 1980. J. Biol. Chem. 255, 1266–1272.

  26. 26.

    Smith, B. B. and Rebeiz, C. A., 1977. Arch. Biochem. Biophys. 180: 178–185.

  27. 27.

    Rebeiz, C. A., Mattheis, J. R., Smith, B. B., Rebeiz, C. C. and Dayton, D. F., 1975. Arch. Biochem. Biophys. 166: 446–465.

  28. 28.

    Wu, S. M. and Rebeiz, C. A., 1983 (submitted for publication).

  29. 29.

    Bazzaz, M. B. and Brereton, R. G., 1982. FEBS Lett. 138: 104–108.

  30. 30.

    Bazzaz, M. B., Bradley, C. V. and Brereton, R. G., 1982. Tetrahedron Lett. 23: 1211–1214.

  31. 31.

    Fischer, H. and Stern, A., 1940. Die Chemie des Pyrrols, Vol. 2, Part 11, Akad. Verlagsges, Leipzig.

  32. 32.

    Freyssinet, G, Rebeiz, C. A., Fenton, J. F., Khanna, R. and Govindjee, 1980. Photobiochem. Photobiophys. 1: 203–212.

  33. 33.

    Duggan, J. X. and Rebeiz, C. A., 1982. Plant Sci. Lett. 24: 27–37.

  34. 34.

    Duggan, J. X. and Rebeiz, C. A., 1982. Plant Sci. Lett. 27: 137–145.

  35. 35.

    Wolff, J. B. and Price, L., 1957. Arch. Biochem. Biophys. 72: 293–301.

  36. 36.

    Schoch, S., Lampert, U. and Rüdiger, W., 1977. Z. pflanzenphysiol. 83: 427–436.

  37. 37.

    Rebeiz, C. A., Belanger, F. C., Freyssinet, G. and Saab, D. G., 1980. Biochim. Biophys. Acta 590: 234–247.

  38. 38.

    Shipman, L. L., Cotton, T. M., Norris, J. R., and Katz, J. J., 1976. J. Am. Chem. Soc. 98: 8222–8230.

  39. 39.

    Belanger, F. C. and Rebeiz, C. A., 1983 (submitted for publication).

  40. 40.

    Woodward, R. B., Ayer, W. A., Beaton, J. M., Bickelhaupt, F., Bonnett, R., Buchschaeher, P., Closs, G. L., Dutler, H., Hannah, J., Hauck, F. P., Ito, S., Langemann, A., LeGoff, E., Leimgruber, W., Lwowski, W., Sauer, J., Valenta, Z. and Volz, H., 1960. J. Am. Chem. Soc. 82: 3800–3802.

  41. 41.

    Seely, G. R., 1966. The Chlorophylls (Vernons, L. P. and Seely, G. R., eds.), pp. 67–109, Academic Press, New York.

  42. 42.

    Hynninen, P., 1979. J. Chromatogr. 175: 75–88.

  43. 43.

    Hynninen, P. H., Wasielewski, M. R. and Katz, J. J., 1979. Acta. Chem. Scand. 33: 637–648.

  44. 44.

    Seely, J. R., 1973. J. Theoret. Biol. 40: 173–180.

  45. 45.

    Baum, R. M., 1982. Chem. and Eng. News. June 14: 21–25.

  46. 46.

    Boucher, L. J., 1979. Coordination Chemistry of Macrocyclic Compounds (Melson, G. A., ed.), pp. 517–536, Plenum Press, New York.

  47. 47.

    Belanger, F. C. and Rebeiz, C. A., 1983. (submitted for publication).

  48. 48.

    Govindjee, Wydrzynski, T. and Morks, S. B., 1977. Bioenergetics of Membranes (Packer, L., Papageorgiou, G. and Trebst, A., eds.), pp. 305–316, Elsevier/North-Holland Biomedical Press, Amsterdam.

  49. 49.

    Wydrzynski, T. and Sauer, K., 1980. Biochim. Biophys. Acta 589: 56–70.

  50. 50.

    Wydrzynski, T., 1982. Photosynthesis: Energy Conversion by Plants and Bacteria (Govindjee, ed.), Vol. 1, pp. 469–506, Academic Press, New York.

  51. 51.

    Fong, F. K., 1975. Appl. Phys. 6: 151–166.

  52. 52.

    Showell, M. S. and Fong, F. K., 1982. J. Am. Chem. Soc. 104: 2773–2781.

  53. 53.

    Norris, J. R., Uphaus, R. A., Crespi, H. L. and Katz, J. J., 1971. Proc. Natl. Acad. Sci. U.S.A. 68: 625–628.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rebeiz, C.A., Wu, S.M., Kuhadja, M. et al. Chlorophylla biosynthetic routes and chlorophylla chemical heterogeneity in plants. Mol Cell Biochem 57, 97–125 (1983). https://doi.org/10.1007/BF00849189

Download citation

Keywords

  • Chlorophyll
  • Chlorophylla
  • Macrocycle
  • Chemical Heterogeneity
  • Cyclopentanone