Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A logical approach to representing and reasoning about space

  • 52 Accesses

  • 5 Citations

Abstract

The need for a formal language in which to express and reason about spatial concepts is of crucial importance in many areas of AI and visual systems. For the last five years, spatial reasoning research by the Qualitative Spatial Reasoning Group, University of Leeds, has centred on the development and application of such a language — the RCC spatial logic. Below, we briefly describe the work of the group in this area.

This is a preview of subscription content, log in to check access.

References

  1. Allen, J. F. (1983). Maintaining Knowledge About Temporal Intervals.Communications of the ACM 26(11): 832–843.

  2. Bennett, B. (1994). Spatial Reasoning with Propositional Logics. In Doyle, J., Sandewall E. & Torasso, P. (eds.)Principles of Knowledge Representation and Reasoning: Proceedings ofThe 4th International Conference (KR94), Morgan Kaufamnn: San Francisco, CA.

  3. Clarke, B. L. (1981). A Calculus of Individuals Based on Connection.Notre Dame Journal of Formal Logic 23(3): 204–218.

  4. Clarke, B. L. (1985). Individuals and Points.Notre Dame Journal of Formal Logic 26(1): 61–75.

  5. Cohn, A. G. & Gooday, J. M. (1994). Defining the Syntax and the Semantics of a Visual Programming Language in a Spatial Logic. In Anger, F. D. & Loganantharaj, R. (eds.) Proceedings ofAAAI-94 Spatial and Temporal Reasoning Workshop.

  6. Cohn, A. G. & Gotts, N. M. (1994). The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. Proceedings,GISDATA Specialist Meeting on Geographical Objects with Undetermined Boundaries, Baden, Austria, 8–12 June 1994 (to appear).

  7. Cohn, A. G., Gooday, J. M. & Bennett, B. (1994). A Comparison of Structures in Spatial and Temporal Logics. In Casati, R., Smith. B. & White, G. (eds.)Philosophy and the Cognitive Sciences: Proceedings of the 16th International Wittgenstein Symposium. Hölder-Pichler-Tempsky: Vienna (to appear).

  8. Cohn, A. G., Randell, D. A. & Cui, Z. (1994). Taxonomies of Logically Defined Qualitative Spatial Relations. In Guarino, N. & Poli, R. (eds.)Formal Ontology in Conceptual Analysis and Knowledge Representation. Kluwer (to appear).

  9. Cohn, A. G., Randell, D. A., Cui, Z. & Bennett, B. (1993). Qualitative Spatial Reasoning and Representation. In Carreté, N. P. & Singh, M. G. (eds.)Qualitative Reasoning and Decision Technologies, 513–522. CIMNE: Barcelona.

  10. Cui, Z., Cohn, A. G. & Randell, D.A. (1992a). Qualitative Simulation Based on a Logic of Space and Time.QR-92, Heriot-Watt University: Scotland.

  11. Cui, Z., Cohn, A. G. & Randell, D. A. (1992b). Qualitative Simulation Based on a Logical Formalism of Space and Time. ProceedingsAAAI-92, 679–687 AAAI Press: Menlo Park, California.

  12. Gooday, J. M. & Cohn, A. G. (1994). Conceptual Neighbourhoods in Spatial and Temporal Reasoning. In Rodríguez, R. (ed.) ProceedingsECAI-94 Workshop on Spatial and Temporal Reasoning.

  13. Gotts, N. M. (1994). How Far Can We ‘C’? Defining a ‘Doughnut’ Using Connection Alone. In Doyle, J., Sandewall, E. & Torasso, P. (eds.)Principles of Knowledge Representation and Reasoning: Proceedings ofThe 4th International Conference (KR94). Morgan Kaufmann: San Francisco, CA.

  14. Randell, D. A. & Cohn, A. G. (1989), Modelling Topological and Metrical Properties of Physical Processes, In Brachman, R., Levesque, H. & Reiter, R. (eds.) Proceedings ofThe International Conference on the Principles of Knowledge Representation and Reasoning, Morgan Kaufamnn: Los Altos.

  15. Randell, D. A. & Cohn, A. G. (1992). Exploiting Lattices in a Theory of Space and Time.Computers and Mathematics with Applications 23(6–9): 459–476. Also appears inSemantic Networks, F. Lehmann (ed.), Pergamon Press: Oxford, pp. 459–476, 1992.

  16. Randell, D. A., Cohn, A. G. & Cui, Z. (1992a). Computing Transitivity Tables: A Challenge for Automated Theorem Provers. ProceedingsCADE 11, Springer Verlag: Berlin.

  17. Randell, D. A., Cohn, A. G. & Cui, Z. (1992b). An Interval Logic for Space Based on “Connection”. ProceedingsECAI-92, 394–398. John Wiley: Chichester.

  18. Randell, D. A., Cohn, A. G. & Cui, Z. (1992c). Naive Topology: Modelling the Force Pump. In Struss, P. & Faltings, B. (eds.)Advances in Qualitative Physics, 177–192. MIT Press.

  19. Randell, D. A., Cui, Z. & Cohn, A. G. (1992). A Spatial Logic Based on Regions and Connection. Proceedings ofThe 3rd International Conference on Knowledge Representation and Reasoning, 165–176. Morgan Kaufamnn: San Mateo.

  20. Vieu, L. (1991). Sémantique des relations spatiales et inférences spatio-temporelles. PhD thesis, Université Paul Sabatier, Toulouse.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cohn, A.G., Gooday, J.M., Bennett, B. et al. A logical approach to representing and reasoning about space. Artif Intell Rev 9, 255–259 (1995). https://doi.org/10.1007/BF00849038

Download citation

Key words

  • spatial reasoning
  • qualitative reasoning