Quantitative morphogenetic investigations on fine structural changes in the optic tectum of the rainbow trout (Salmo gairdneri) during ontogenesis

  • Hinrich Rahmann
  • Gunnar Jeserich


The morphogenetic differentiation of synapses of the optic tectum of the rainbow trout was investigated at different stages of development (from hatching to adult) and compared with the improvement in visual discrimination (minimum separable).
  1. (1)

    The main phase of synaptogenesis (increase in number of synapses, length of contact zone and number of vesicles) begins about one week after hatching and continues up to the age of one month, when the larvae start swimming freely.

  2. (2)

    Myelination begins 26 days after hatching and induces the end of the synaptogenesis period.

  3. (3)

    The visual discrimination (minimum separable) of trout larvae improves from 30 degrees of arc on the 10th day after hatching to 1 degree on day 30, then to about 14 to 18 min of arc in the adult.


The results are discussed with special reference to previous biochemical investigations on changes in the ganglioside composition of the trout brain during comparable periods of development.

Key words

Synaptogenesis Electron microscopy Visual acuity Fish development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K., Bloom, F.E.: The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res.6, 716–727 (1967)PubMedGoogle Scholar
  2. Atherton, R.W., Lee, J.D.: Changes in the activity and isoenzymes of acetyl- and butyrylcholinesterase duringXenopus laevis development. Comp. Biochem. Physiol.50c, 27–32 (1975)Google Scholar
  3. Berry, M.: Development of the cerebral neocortex of the rat. In: Aspects of Neurogenesis, Studies on the Development of Behavior and the Nervous System. pp. 8–67 (G. Gottlieb, ed.), Vol. 2, New York: Academic Press 1974Google Scholar
  4. Breer, H., Rahmann, H.: Cholinesterase-Aktivität und Hirnganglioside während der Fisch-Entwicklung. Wilhem Roux's Archives181, 65–72 (1977)Google Scholar
  5. Cragg, B.G.: The development of synapses in cat visual cortex. Invest. Ophthalm.11, 377–385 (1972)Google Scholar
  6. Dalton, A.J.: A chrome-osmium fixative for electron microscopy. Anat. Rec.121, 281 (1955)Google Scholar
  7. Foelix, R.F., Oppenheim, R.W.: Synaptogenesis in the avian embryo: Ultrastructure and possible behavioral correlates. In: Behavioral Embryology, Studies on the Development of Behavior and the Nervous System. (G. Gottlieb, ed.), Vol. 1, pp. 104–139 New York: Academic Press, 1973Google Scholar
  8. Foelix, R.F., Oppenheim, R.W.: The development of synapses in the cerebellar cortex of the chick embryo. J. Neurocytol.3, 277–294 (1974)PubMedGoogle Scholar
  9. Gottlieb, G.: Ontogenesis of sensory function in birds and mammals. In: Biopsychology of Development. (E. Tobach et al., eds.), New York: Academic Press 1971Google Scholar
  10. Hansson, H.A., Holmgren, J., Svennerholm, L.: Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc. Nat. Acad. Sci. USA74, 3782–3786 (1977)PubMedGoogle Scholar
  11. Haug, H., Kölln, M., Rast, A.: The postnatal development of myelinated nerve fibres in the visual cortex of the cat. A stereological and electron microscopical investigation. Cell Tiss. Res.167, 265–288 (1976)Google Scholar
  12. Hayes, B.P., Roberts, A.: Synaptic junction development in the spinal cord of an amphibian embryo: an electron microscope study. Z. Zellforsch.137, 251–269 (1973)PubMedGoogle Scholar
  13. Irwin, L.N., Chen, H., Barraco, R.A.: Ganglioside, protein, hexose, and sialic acid changes in the trisected optic tectum of the chick embryo. Develop. Biol.49, 29–39 (1976)PubMedGoogle Scholar
  14. Morgan, J.G., Zanetta, J.P., Breckenridge, W.C., Vincendon, G., Gombos, G.: The chemical structure of synaptic membranes. Brain Research62, 405–411 (1973)PubMedGoogle Scholar
  15. Oppenheim, R.W., Foelix, R.F.: Synaptogenesis in the chick embryo spinal cord. Nature235, 126–128 (1972)Google Scholar
  16. Provine, R.R.: Neurophysiological aspects of behavior development in the chick embryo. In: Behavioral Embryology. Studies in the Development of Behavior and the Nervous System. (G. Gottlieb, ed.), Vol. 1, pp. 77–102 New York: Academic Press, 1973Google Scholar
  17. Rager, G.: Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. I. The retinal ganglion cells and their axons. Proc. Roy. Soc. London Ser. B.192, 331–352 (1976a) II. The retino-tectal synapses. Proc. Roy. Soc. London, Ser. B.192, 353–370 (1976)Google Scholar
  18. Rogers, K.T., de Vries, L., Kepler, J.A., Kepler, C.R., Speidel, E.R.: Studies on chick brain of biochemical differentiation related to morphological differentiation and onset of function. J. Exp. Zool.144, 89–103 (1960)Google Scholar
  19. Rösner, H.: (personal communication)Google Scholar
  20. Roukema, P.A.: van den Eijnden, D.H., Heijlman, J., van den Berg, G.: Sialoglycoproteins, gangliosides, and related enzymes in developing rat brain. FEBS-Letters9, 267–270 (1970)PubMedGoogle Scholar
  21. Rahmann, H., Rösner, H., Breer, H.: A functional model of sialo-glycomacro-molecules in synaptic transmission and memory formation. J. Theor. Biol.57, 231–237 (1976)PubMedGoogle Scholar
  22. Shen, S.C., Greenfield, D., Boell, J.E.: The distribution of cholinesterase in the frog brain. J. Comp. Neurology102, 717–745 (1955)Google Scholar
  23. Vestal, B.M.: Ontogeny of visual acuity in two species of deer mice (Peromyscus). Animal Behav.21, 711–719 (1973)Google Scholar
  24. Vrensen, G., de Groot, D.: Quantitative stereology of synapses: a critical investigation. Brain Res.58, 25–35 (1973)PubMedGoogle Scholar
  25. Wiegandt, H.: Struktur und Funktion der Ganglioside. Angew. Chemie80, Nr. 3, 89–98 (1968)Google Scholar
  26. Woodward, D.J., Hoffer, B.J., Siggins, G.R., Bloom, F.E.: The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells. Brain Res.34, 73–97 (1971)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Hinrich Rahmann
    • 1
  • Gunnar Jeserich
    • 1
  1. 1.Institute of ZoologyUniversity of Stuttgart-HohenheimStuttgart 70Germany

Personalised recommendations