Wilhelm Roux's archives of developmental biology

, Volume 193, Issue 5, pp 267–282

Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster

I. Zygotic loci on the second chromosome
  • C. Nüsslein-Volhard
  • E. Wieschaus
  • H. Kluding
Article

Summary

In a search for embryonic lethal mutants on the second chromosome ofDrosophila melanogaster, 5764 balanced lines isogenic for an ethyl methane sulfonate (EMS)-treatedcn bw sp chromosome were established. Of these lines, 4217 carried one or more newly induced lethal mutations corresponding to a total of 7600 lethal hits. Eggs were collected from lethal-bearing lines and unhatched embryos from the lines in which 25% or more of the embryos did not hatch (2843 lines) were dechorionated, fixed, cleared and scored under the compound microscope for abnormalities of the larval cuticle. A total of 272 mutants were isolated with phenotypes unequivocally distinguishable from wild-type embryos on the basis of the cuticular pattern. In complementation tests performed between mutants with similar phenotype, 48 loci were identified by more than one allele, the average being 5.4 alleles per locus. Complementation of all other mutants was shown by 13 mutants. Members of the complementation groups were mapped by recombination analysis. No clustering of loci with similar phenotypes was apparent. From the distribution of the allele frequencies and the rate of discovery of new loci, it was estimated that the 61 loci represent the majority of embryonic lethal loci on the second chromosome yielding phenotypes recognizable in the larval cuticle.

Key words

Drosophila Larval cuticle Pattern formation Embryonic lethal mutations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M, Faithfull J, Littlewood T, Richards G, Smith S, Velissariou V, Woodruff R (1980) New Mutants Dros Inf Serv 55:193Google Scholar
  2. Ashburner M, Angel P, Detwiler C, Faithfull J, Gubb D, Harrington G, Littlewood J, Tsubota S, Velissariou V, Walker V (1981) New Mutants Dros Inf Serv 56:186Google Scholar
  3. Ashburner M, Aaron CS, Tsubota S (1982) The genetics of a small autosomal region ofDrosophila melanogaster, including the structural gene for alcohol dehydrogenase V. Characterization of X-ray-inducedAdh null mutations. Genetics 102:421–435Google Scholar
  4. Babu P (1977) Early developmental subdivisions of the wing disk inDrosophila. Mol Gen Genet 151:289–294Google Scholar
  5. Frohnhöfer H-G (1982) Abgrenzung maternaler und zygotischer Anteile bei der genetischen Kontrolle der Musterbildung inDrosophila melanogaster. Diplomarbeit, TübingenGoogle Scholar
  6. Gans M, Audit C, Masson M (1975) Isolation and characterization of sex linked female sterile mutants inDrosophila melanogaster. Genetics 81:683–704Google Scholar
  7. Garcia-Bellido A, Ripoll P (1978) The number of genes inDrosophila melanogaster. Nature 273:399–400Google Scholar
  8. Garcia-Bellido A, Moscoso del Prado J (1979) Genetic analysis of maternal information inDrosophila melanogaster. Nature 278:346–348Google Scholar
  9. Gloor H (1950) Schädigungsmuster eines Letalfaktors (Kr) vonDrosophila melanogaster. Arch Jul Klaus Stiftung 25:38–44Google Scholar
  10. Grell EH (1967) Electrophoretic variants of α-Glycerophosphate dehydrogenase inDrosophila melanogaster. Science 158:1319–1320Google Scholar
  11. Hadorn E (1955) Letalfaktoren in ihrer Bedeutung für Erbpathologie und Genphysiologie der Entwicklung. G Thieme, StuttgartGoogle Scholar
  12. Holden J, Suzuki DT (1973) Temperature-sensitive mutations inDrosophila melanogaster XII. The genetic and developmental characteristics of dominant lethals on chromosome 3. Genetics 73:445–458Google Scholar
  13. Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster II. Zygotic loci on the third chromosome. Wilhelms Roux's Arch 193:283–295Google Scholar
  14. Kornberg T (1981)Engrailed: A gene controlling compartment and segment formation inDrosophila. Proc Natl Acad Sci USA 78:1095–1099Google Scholar
  15. Lefevre G (1974) The relationship between genes and polytene chromosome bands. Ann Rev Genet 8:51–62Google Scholar
  16. Lehmann R, Jiménez F, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis inDrosophila melanogaster. Wilhelm Roux's Arch 192:62–74Google Scholar
  17. Lewis EB (1978) A gene complex controlling segmentation inDrosophila. Nature 276:565–570Google Scholar
  18. Lewis EB, Bacher F (1968) Method of feeding ethyl methane sulfonate (EMS) toDrosophila males. Dros Inf Serv 43:193Google Scholar
  19. Lindsley DL, Grell EL (1968) Genetic variations ofDrosophila melanogaster. Carnegie Inst Wash Publ 627Google Scholar
  20. Lindsley DL (1972) Segmental aneuploidy and the genetic gross structure of theDrosophila genome. Genetics 72:157–184Google Scholar
  21. Lohs-Schardin M, Cremer C, Nüsslein-Volhard C (1979) A fate map for the larval epidermis ofDrosophila melanogaster: Localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255Google Scholar
  22. Mohler JD (1977) Developmental genetics of theDrosophila egg I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development. Genetics 85:259–272Google Scholar
  23. Nüsslein-Volhard C (1977a) Genetic analysis of pattern formation in the embryo ofDrosophila melanogaster. The maternal effect mutantbicaudal. Wilhelm Roux's Arch 183:249–268Google Scholar
  24. Nüsslein-Volhard C (1977b) A rapid method for screening eggs from singleDrosophila females. Dros Inf Serv 52:166Google Scholar
  25. Nüsslein-Volhard C (1979) Maternal effect mutations that alter the spatial coordinates of the embryo ofDrosophila melanogaster. In: Subtelny S, Konigsberg IR (eds) Determinants of spatial organisation. Academic Press, New York pp 185–211Google Scholar
  26. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity. Nature 287:795–801Google Scholar
  27. Nüsslein-Volhard C, Wieschaus E, Jürgens G (1982) Segmentierung beiDrosophila: Eine genetische Analyse. Verh Dtsch Zool Ges 91–104Google Scholar
  28. Poulson DF (1940) The effect of certain X chromosome deficiencies on the embryonic development ofDrosophila melanogaster. J Exp Zool 83:271–325Google Scholar
  29. Rice TB (1973) Isolation and characterization of maternal effect mutants. An approach to the study of early determination inDrosophila melanogaster. Thesis Yale University, New HavenGoogle Scholar
  30. Rice TB, Garen A (1975) Localized defects of blastoderm formation in maternal effect mutants ofDrosophila. Dev Biol 43:277–286Google Scholar
  31. Simpson P (1983) Maternal and zygotic gene interactions during formation of the dorso-ventral pattern inDrosophila embryos. Genetics 105:615–632Google Scholar
  32. Spencer FA, Hoffmann FM, Gelbart WM (1982) Decapentaplegic: A gene complex affecting morphogenesis inDrosophila melanogaster. Cell 28:451–461Google Scholar
  33. Suzuki DI (1970) Temperature-sensitive mutations inDrosophila melanogaster. Science 170:695–706Google Scholar
  34. Suzuki DT, Procunier D (1969) Temperature-sensitive mutations inDrosophila melanogaster III. Dominant lethals and semilethals on Chromosome 2. Proc Natl Acad Sci USA 62:369–376Google Scholar
  35. Szabad J, Schüpbach T, Wieschaus E (1979) Cell lineage and development in the larval epidermis ofDrosophila melanogaster. Dev Biol 73:256–271Google Scholar
  36. Van der Meer J (1977) Optical clean and permanent wholemount preparation for phase contrast microscopy of cuticular structures of insect larvae. Dros Inf Serv 52:160Google Scholar
  37. Wakimoto BT, Kaufman TC (1981) Analysis of larval segmentation in lethal genotypes associated with the antennapedia-genecomplex inDrosophila melanogaster. Dev Biol 81:51–64Google Scholar
  38. Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984a) Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster III. Zygotic loci on the X-chromosome and fourth chromosome. Wilhelm Roux's Arch 193:296–307Google Scholar
  39. Wieschaus E, Nüsslein-Volhard C, Kluding H (1984b)Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev Biol [in press]Google Scholar
  40. Wright TRF (1970a) The genetics of embryogenesis inDrosophila. Adv Genet 15:262–395Google Scholar
  41. Wright TRF (1970b) A short cut in making chromosomes homozygous. Dros Inf Serv 45:140Google Scholar
  42. Wright TRF, Hodgetts RB, Sherald AF (1976a) The genetics of dopa decarboxylase inDrosophila melanogaster I. Isolation and characterization of deficiencies of the structural locus and the α-methyl dopa hypersensitive locus. Genetics 84:267–285Google Scholar
  43. Wright TRF, Bewley GC, Sherald AF (1976b) The genetics of dopa decarboxylase inDrosophila melanogaster II. Isolation and characterisation of dopa decarboxylase-deficient mutants and their relationship to the α-methyl-dopa-hypersensitive mutants. Genetics 84:287–310Google Scholar
  44. Wright TRF, Beermann W, Marsh LM, Bishop CP, Steward R, Black BC, Tomsett AD, Wright E (1981) The genetics of Dopa-Decarboxylase inDrosophila melanogaster IV. The genetics and cytology of the 37B10-37D1 Region. Chromosoma 83:45–58Google Scholar
  45. Zalokar M, Audit C, Erk I (1975) Developmental defects of female sterile mutants ofDrosophila melanogaster. Dev Biol 47:419–432Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • C. Nüsslein-Volhard
    • 1
    • 2
  • E. Wieschaus
    • 1
    • 2
  • H. Kluding
    • 1
    • 2
  1. 1.European Molecular Biology LaboratoryHeidelbergFederal Republic of Germany
  2. 2.Friedrich Miescher-Laboratorium der Max-Planck-GesellschaftTübingenFederal Republic of Germany
  3. 3.Department of BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations