Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Simple waves in quadratically nonlinear hyperelastic materials

  • 26 Accesses

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Z. Vesolovskii, Dynamic Problems of the Nonlinear Theory of Elasticity [in Russian], Nauk Dumka, Kiev (1981).

  2. 2.

    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves, [in Russian], Nauka, Moscow (1990).

  3. 3.

    Z. A. Gol'dberg, "Relationship between longitudinal and transverse plane waves," Akust. Zh.,6, No. 2, 307–310 (1960).

  4. 4.

    A. N. Guz', Elastic Waves in Bodies with Initial Stresses. Vol. 1. General Problems. Vol. 2. Propagation Laws. [in Russian], Nauk. Dumka, Kiev (1986).

  5. 5.

    L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

  6. 6.

    G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Nauka, Moscow (1988).

  7. 7.

    V. A. Krasil'nikov and V. V. Krylov, Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1984).

  8. 8.

    J. Lighthill, Waves in Fluids [Russian translation], Mir, Moscow (1981).

  9. 9.

    M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Vibrations and Waves [in Russian], Nauka, Moscow (1984).

  10. 10.

    Ya. Ya. Rushchitskii, "Nonlinear plane wave in a two-phase material," Dopov. Akad. Nauk Ukr. RSR Ser. A, No. 2, 45–47 (1990).

  11. 11.

    Ya. Ya. Rushchitskii, "Interaction of compression and shear waves in a composite having a microstructure with nonlinearly elastic components," Prikl. Mekh.,29, No. 4, 18–26 (1993).

  12. 12.

    Ya. Ya. Rushchitskii and E. V. Savel'eva, "Evolution of a harmonic wave during its passage through a two-phase material," Prikl. Mekh.,28, No. 9, 42–46 (1992).

  13. 13.

    L. I. Sedov, Continuum Mechanics, Vol. 2, Nauka, Moscow (1970).

  14. 14.

    K. Trusdell, Introductory Course in Rational Continuum Mechanics [Russian translation], Mir, Moscow (1975).

  15. 15.

    J. Wizem, Linear and Nonlinear Waves [Russian translation], Mir, Moscow (1977).

  16. 16.

    A. C. Eringen, Nonlinear Theory of Continuous Media, McGraw-Hill, New York (1964).

  17. 17.

    V. B. Fu and N. H. Scott, "The transition from acceleration wave to shock wave," Int. J. Eng.,29, No. 5, 617–624 (1991).

Download references

Additional information

S. P. Timoshenko Institute of Mechanics, Academy of Sciences of the Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 8, pp. 35–41, August, 1994.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rushchitskii, Y.Y. Simple waves in quadratically nonlinear hyperelastic materials. Int Appl Mech 30, 586–592 (1994). https://doi.org/10.1007/BF00847230

Download citation

Keywords

  • Hyperelastic Material
  • Simple Wave
  • Nonlinear Hyperelastic Material