Space Science Reviews

, Volume 75, Issue 3–4, pp 551–604

Steady magnetospheric convection: A review of recent results

  • V. A. Sergeev
  • R. J. Pellinen
  • T. I. Pulkkinen
Article

Abstract

Theoretical pressure balance arguments have implied that steady convection is hardly possible in the terrestrial magnetotail and that steady energy input necessarily generates a cyclic loading-unloading sequence, i.e., repetitive substorms. However, observations have revealed that enhanced solar wind energy input to the magnetospheric system may either lead to substorm activity or enhanced but steady convection. This topic is reviewed with emphasis on several recent case studies of the Steady Magnetospheric Convection (SMC) events. In these cases extensive data sets from both satellite and ground-based instruments from various magnetospheric and ionospheric regions were available.

Accurate distinction of the spatial and temporal scales of the magnetospheric processes is vital for correct interpretation of the observations during SMC periods. We show that on the large scale, the magnetospheric configuration and plasma convection are stable during SMC events, but that both reveal considerable differences from their quiet-time assemblies. On a shorter time scale, there are numerous transient activations which are similar to those found during substorms, but which presumably originate from a more distant tail reconnection process, and map to the poleward boundary of the auroral oval. The available observations and the unresolved questions are summarized here.

The tail magnetic field during SMC events resembles both substorm growth and recovery phases in the neartail and midtail, respectively, but this configuration may remain stable for up to ten hours. Based on observations and model results we discuss how the magnetospheric system avoids pressure balance problems when the plasma convects earthward.

Finally, the importance of further coordinated studies of SMC events is emphasized. Such studies may shed more light on the substorm dynamics and help to verify quantitatively the theoretical models of the convecting magnetosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu, S.-I.: 1981, ‘Energy Coupling Between the Solar Wind and the Magnetosphere’,Space Sci. Rev. 28, 121.Google Scholar
  2. Akasofu, S.-I.: 1985, ‘A Magnetospheric Storm with a Nearly Constant Input Rate for About 24 Hours’,Planetary Space Sci. 33, 81.Google Scholar
  3. Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H., and Paschmann, G.: 1992, ‘Bursty Bulk Flows in the Inner Central Plasma Sheet‘,J. Geophys. Res. 97, 4027.Google Scholar
  4. Ashour-Abdalla, M., Zelenyi, L. M., Bosqued, J. M., Peroomian, V., Wang, Z., Schriver, D., and Richard, R.: 1992, ‘Effects of Near-Earth Stochastic Acceleration and Reflections of Magnetotail Ions on the Formation of Auroral Arcs,’ in Substorms 1,Eur. Space Agency Spec. Publ. 335, 545.Google Scholar
  5. Baker, D. N.: 1992, ‘Driven and Unloading Aspects of Magnetospheric Substorms’, in Substorms 1,Eur. Space Agency Spec. Publ. 335, 185.Google Scholar
  6. Baker, D. N. and McPherron, R. L.: 1990, ‘Extreme Energetic Particle Decreases Near Geostationary Orbit: A Manifestation of Current Diversion within the Inner Plasma Sheet’,J. Geophys. Res. 95, 6591.Google Scholar
  7. Baker, D. N., Akasofu, S.-L, Baumjohann, W., Bieber, W. J., Fairfield, D. H., Hones, E. W. Jr., Mauk, B., McPherron, R. L., and Moore, T. E.: 1984, ‘Substorms in the Magnetosphere’, inSolar Terrestrial Physics -Present and Future, NASA Publ., 1120, Chapter 8.Google Scholar
  8. Baker, D. N., Fritz, T. A., McPherron, R. L., Fairfield, D. H., Kamide, Y., and Baumjohann, W.: 1985, ‘Magnetotail Energy Storage and Release During the CDAW 6 Substorm Analysis Intervals’,J. Geophys. Res. 90, 1205.Google Scholar
  9. Baker, D. N., Klimas, A. J., McPherron, R. L., and Büchner, J.: 1990, ‘The Evolution from Weak to Strong Geomagnetic Activity: An Interpretation in Terms of Deterministic Chaos’,Geophys. Res. Letters 17, 41.Google Scholar
  10. Baumjohann, W.: 1993, ‘The Near-Earth Plasma Sheet: An AMPTE/IRM Perspective’,Space Sci. Rev. 64, 141.Google Scholar
  11. Berkey, F. T. and Kamide, Y.: 1976, ‘On the Distribution of Global Auroras During Intervals of Magnetospheric Quiet’,J. Geophys. Res. 81, 4701.Google Scholar
  12. Birn, J., Schindler, K., and Hesse, M.: 1994, in R. Kan, J. D. Craven, and S.-I. Akasofu (eds.), ‘Magnetotail Dynamics: MHD Simulations of Driven and Spontaneous Dynamic Changes’,Proceedings of the International Conference on Substorms, University of Alaska at Fairbanks.Google Scholar
  13. Borovsky, J. E., Nemzek, R. J., and Belian, R. D.: 1993, ‘The Occurrence Rate of Magnetospheric Substorm Onsets: Random and Periodic Substorms’,J. Geophys. Res. 98, 3807.Google Scholar
  14. Caan, M. N., McPherron, R. L., and Russell, C. T.: 1973, ‘Solar Wind and Substorm-Related Changes in the Lobes of the Geomagnetic Tail’,J. Geophys. Res. 78, 8087.Google Scholar
  15. Caan, M. N., McPherron, R. L., and Russell, C. T.: 1978, ‘The Statistical Magnetic Signature of Magnetospheric Substorms’,Planetary Space Sci. 26, 269.Google Scholar
  16. Cattell, C. A. and Mozer, F. S.: 1982, ‘Electric Field Measured by ISEE-1 within and Near the Neutral Sheet During Quiet and Active Times’,Geophys. Res. Letters 9, 1041.Google Scholar
  17. Chapman, S. and Ferraro, V. C. A.: 1931, ‘A New Theory of Magnetic Storms’,Terrest Mag. Atmospheric Electr. 36, 77.Google Scholar
  18. Chen, C. X. and Wolf, A. R.: 1993, ‘Interpretation of High-Speed Flows in the Plasma Sheet’,J. Geophys. Res. 98, 21409.Google Scholar
  19. Cogger, L. L. and Elphinstone, R. D.: 1992, ‘The Viking Auroral Substorm’, in Substorms 1,Eur. Space Agency Spec. Publ. 335, 77.Google Scholar
  20. Coppi, B., Lavai, G., and Pellat, R.: 1966, 'Dynamics of the Geomagnetic Tail,Phys. Rev. Letters 16, 1207.Google Scholar
  21. Coroniti, F. V., Frank, L. A., Williams, D. J., Lepping, R. P., Scarf, P. L., Krimigis, S. M., and Gloeckler, G.: 1980, ‘Variability of Plasma Sheet Dynamics’,J. Geophys. Res. 85, 2957.Google Scholar
  22. Despirak, I. V., Lubchich, A., Yahnin, A., Galperin, Yu. L, Vennerström, S., Aulamo, O., and Craven J.: 1994, ‘Region of Cusp-Like Precipitation in Day Side High Latitudes During Steady Magnetospheric Convection’,Geomagn. Aeron. 5, 5.Google Scholar
  23. Dmitrieva, N. P. and Sergeev, V. A.: 1983, ‘The Spontaneous and Triggered Onset of the Explosive Phase of a Magnetospheric Substorm and the Duration of Its Preliminary Phase’,Geomagn. Aeron. 23, 380.Google Scholar
  24. Dungey, J. R.: 1961, ‘Interplanetary Magnetic Field and the Auroral Zones’,Phys. Rev. Letters 6, 47.Google Scholar
  25. Erickson, G. M.: 1992, ‘A Quasi-Static Magnetospheric Convection Model in Two Dimensions’,J. Geophys. Res. 97, 6505.Google Scholar
  26. Fairfield, D. H.: 1992, ‘Advances in Magnetospheric Storm and Substorm Research: 1989–1991’,J. Geophys. Res. 97, 10865.Google Scholar
  27. Fairfield, D. H. and Cahill, L. J., Jr.: 1966, ‘Transition Region Magnetic Field and Polar Magnetic Disturbances’,J. Geophys. Res. 71, 155.Google Scholar
  28. Fairfield, D. H. and Zanetti, L. J.: 1989, ‘Three-Point Magnetic Field Observations of Substorms in the Inner Magnetotail’,J. Geophys. Res. 94, 3565.Google Scholar
  29. Farrugia, C. J., Burlaga, L. F., Osherovich, V. A., Richardson, I. G., Freeman, M. P., Lepping, R. P., and Lazarus, A. J.: 1993, ‘A study of an Expanding Interplanetary Magnetic Cloud and Its Interaction with the Earth's Magnetosphere: The Interplanetary Aspect’,J. Geophys. Res. 98, 7621.Google Scholar
  30. Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: 1994, ‘What is a Geomagnetic Storm?’,J. Geophys. Res. 99, 5771.Google Scholar
  31. Hau, L. N., Wolf, R. A., Voigt, G.-H., and Wu, C. C.: 1989, ‘Steady-State Magnetic Field Configurations for the Earth's Magnetotail’,J. Geophys. Res. 94, 1303.Google Scholar
  32. Hones, E. W., Jr.: 1979, in S.-I. Akasofu (ed.), ‘Plasma Flow in the Magnetotail and its Implications for Substorm Theories’,Dynamics of the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, p. 545.Google Scholar
  33. Hones, E. W., Jr., Asbridge, J. R., Bame, S. J., and Singer, S.: 1973, ‘Substorm Variations of the Magnetotail Plasma Sheet fromX sm = −6R e toX sm = −60R e’,J. Geophys. Res. 78, 109.Google Scholar
  34. Huang, C. Y. and Frank, L. A.: 1994, ‘A Statistical Survey of the Central Plasma Sheet’,J. Geophys. Res. 99, 83.Google Scholar
  35. Iijima, T.: 1973, ‘Enhancement of the Sqp Field as the Basic Component of Polar Magnetic Disturbance’,Rep. Ionospheric Res. Space Res. Japan 27, 199.Google Scholar
  36. Iyemori, T.: 1994, in Y. Kamide (ed.), ‘Relative Contribution of IMFB z and substorms to theDst Component’,International Conference on Magnetic Storms, Rikubetsu, Hokkaido, October 6–8, 1994, Solar-Terrestrial Environmental Laboratory, Nagoya, p. 98.Google Scholar
  37. Kamide, Y.: 1992, ‘Is Substorm Occurrence a Necessary Condition for a Magnetic Storm?’,J. Geomagn. Geoelectr. 44, 109.Google Scholar
  38. Kamide, Y., Perrault, P. D., Akasofu, S.-I., and Winningham, J. D.: 1977, ‘Dependence of Substorm Occurrence Probability on the Interplanetary Magnetic Field and on the Size of the Auroral Oval’,J. Geophys. Res. 82, 5521.Google Scholar
  39. Kan, J. R.: 1993, ‘A Global Magnetosphere-Ionosphere Coupling Model of Substorms,J. Geophys. Res. 98, 17263.Google Scholar
  40. Klimas, A. J., Baker, D. N., Roberts, D. A., and Fairfield, D. H.: 1992, ‘A Nonlinear Dynamical Analogue Model of Geomagnetic Activity’,J. Geophys. Res. 97, 12253.Google Scholar
  41. Koskinen, H. E. J., Lopez, R. E., Pellinen, R. J., Pulkkinen, T. I., Baker, D. N., and Bösinger, T.: 1993, ‘Pseudobreakup and Substorm Growth Phase in the Ionosphere and Magnetosphere’,J. Geophys. Res. 98, 5801.Google Scholar
  42. Lui, A. T. Y., Lopez, R. E., Anderson, B. J., Takahashi, K., Zanetti, L. J., McEntire, R. W., Potemra, T. A., Klumpar, D. M., Greene, D. M., and Strangeway, R.: 1992, ‘Current Disruptions in the Near-Earth Neutral Sheet Region’,J. Geophys. Res. 97, 1461.Google Scholar
  43. Malkov, M. V. and Sergeev, V. A.: 1991, ‘Characteristic Anomalies of the Magnetospheric Configuration Under Stable Convection Activity’,Geomagn. Aeron. 31, 578.Google Scholar
  44. McPherron, R. L.: 1991, ‘Physical Processes Producing Magnetospheric Substorms and Magnetic Storms’, inGeomagnetism, Vol. 4, p. 593, Academic Press, San Diego, CA.Google Scholar
  45. Nishida, A. and Nagayama, N.: 1973, ‘Synoptic Survey for the Neutral Line in the Magnetotail During the Substorm Expansion Phase’,J. Geophys. Res. 78, 3782.Google Scholar
  46. Walker, R. J., Ogino, T., and Ashour-Abdalla, M.: 1994, ‘A Global Magnetohydrodynamic Simulation of Steady Magnetospheric Convection’, in J. R. Kan, J. D. Craven, and S.-I. Akasofu (eds.),Proceedings of the International Conference on Substorms, University of Alaska at Fairbanks, p. 545.Google Scholar
  47. Ohtani, S., Anderson, B. J., Sibeck, D. G., Newell, P. T., Zanetti, L. J., Potemra, T. A., Takahashi, K., Lopez, R. E., Angelopoulos, V., Nakamura, R., Klumpar, D. M., and Russell, C. T.: 1993, ‘A Multisatellite Study of a Pseudo-Substorm Onset in the Near-Earth Magnetotail’,J. Geophys. Res. 98, 19355.Google Scholar
  48. Pontius, D. H., Jr. and Wolf, R. A.: 1990, ‘Transient Flux Tubes in the Terrestrial Magnetosphere’,Geophys. Res. Letters 17, 49.Google Scholar
  49. Pulkkinen, T. I., Baker, D. N., Pellinen, R. J., Büchner, J., Koskinen, E. J., Lopez, R. E., Dyson, R. L., and Frank, L. A.: 1992, ‘Particle Scattering and Current Sheet Stability in the Geomagnetic Tail During the Substorm Growth Phase’,J. Geophys. Res. 97, 19,283.Google Scholar
  50. Pulkkinen, T. I., Sergeev, V. A., Toivanen, P. K., and Pellinen, R. J.: 1994, in J. R. Kan, J. D. Craven, and S.-I. Akasofu (eds.), ‘What Can We Learn About Substorms by Studying Steady Convection Events?’, inProceedings of the International Conference on Substorms, University of Alaska at Fairbanks, p. 449.Google Scholar
  51. Pytte T., McPherron, R. L., Hones, E. W., Jr., West, H. L., Jr.: 1978, ‘Multiple-Satellite Studies of Magnetospheric Substorms: Distinction between Polar Magnetic Substorms and Convection-Driven Negative Bays’,J. Geophys. Res. 83, 663.Google Scholar
  52. Rostoker, G.: 1983, in B. Hultqvist and T. Hagfors (eds.), ‘Dependence of the High-Latitude Ionospheric Fields and Plasma Characteristics on the Properties of the Interplanetary Plasma’,High-Latitude Space Plasma Physics, Plenum Publ. Co., New York, p. 189.Google Scholar
  53. Rostoker, G. and Skone, S.: 1993, ‘Magnetic Flux Mapping Considerations in the Auroral Oval and the Earth's Magnetotail’,J. Geophys. Res. 98, 1377.Google Scholar
  54. Rostoker, G., Akasofu, S.-I., Foster, J., Greenwald, R. A., Kamide, Y., Kawasaki, K., Lui, A. Y. T., McPherron, R. L., and Russell, C. T.: 1980, ‘Magnetospheric Substorms — Definitions and Signatures’,J. Geophys. Res. 85, 1663.Google Scholar
  55. Rostoker, G., Akasofu, S. I., Baumjohann, W., Kamide, Y., and McPherron, R. L.: 1987, ‘The Roles of Direct Energy Input from the Solar Wind and Unloading of Stored Magnetotail Energy in Driving Magnetospheric Substorms’,Space Sci. Rev. 46, 93.Google Scholar
  56. Saito, Y., Mukai, T., Hirahara, M., Machida, S., and Kaya, N.: 1992, ‘Distribution Function of Precipitating Ion Beams with Velocity Dispersion Observed Near the Poleward Edge of the Nightside Auroral Oval’,Geophys. Res. Letters 19, 2155.Google Scholar
  57. Sauvaud, J.-A.: 1992, ‘Characteristics of the Cross-Tail Current Disruption at Substorm Onset and Associated Particle Acceleration’, in Substorms 1,Eur. Space Agency Spec. Publ. 335, 243.Google Scholar
  58. Savinov, A. V., Sergeev, V. A., Shukhtina, M. A., Ranta, H., and Stauning, P.: 1986, ‘The Relation of the Level of Precipitation of Energetic Electrons to Magnetic Disturbances’,Geomagn. Aeron. 26, 811.Google Scholar
  59. Sergeev, V. A.: 1977, ‘On the State of the Magnetosphere During Prolonged Periods of the Southward Oriented IMF’,Phys. Solariterr. Potsdam 5, 39.Google Scholar
  60. Sergeev, V. A. and Bösinger, T.: 1993, ‘Particle Dispersion at the Nightside Boundary of the Polar Cap’,J. Geophys. Res. 98, 233.Google Scholar
  61. Sergeev, V. A. and Lennartsson, W.: 1988, ‘Plasma Sheet atX ∼ -20 RE During Steady Magnetospheric Convection’,Planetary Space Sci. 36, 353.Google Scholar
  62. Sergeev, V. A. and Vorobyev, V. G.: 1979, ‘Auroral Structure During Steady Convection’,Geomagnetic Researches 25, 60 (in Russian).Google Scholar
  63. Sergeev, V. A., Yahnin, A. G., Rakhmatulin, R. A., Solovjev, S. I., Mozer, R. S., Williams, D. J., and Russell, C. T.: 1986a, ‘Permanent Flare Activity in the Magnetosphere During Periods of Low Magnetic Activity in the Auroral Zone’,Planetary Space Sci. 34, 1169.Google Scholar
  64. Sergeev, V. A., Dmitrieva, N. P., and Barkova, E. S.: 1986b, ‘Triggering of Substorm Expansion by the IMF Directional Discontinuities: Time Delay Analysis’,Planetary Space Sci. 34, 1109.Google Scholar
  65. Sergeev, V. A., Yahnin, A. G., Malkov, M. V., Aulamo, O. A., Pellinen, R. J., and Glassmeier, K.-H.: 1989, ‘Longitudinal Structure of Transient Plasma Injections During Steady Magnetospheric Convection, 6th Scientific Assembly of IAGA, Exeter, UK’,IAGA Bulletin, No. 53, Part C: Abstracts, Divisions II and III, IDCs.Google Scholar
  66. Sergeev, V. A., Aulamo, O., Pellinen, R. J., Vallinkoski, M. K., Bösinger, T., Cattell, C. A., Elphic, R. C., and Williams, D. J.: 1990a, ‘Non-Substorm Transient Injections in the Ionosphere and Magnetosphere’,Planetary Space Sci. 38, 231.Google Scholar
  67. Sergeev, V. A., Lennartsson, W., Pellinen, R., and Vallinkoski, M.: 1990b, ‘Average Patterns of Precipitation and Plasma Flow in the Plasma Sheet Flux Tubes During Steady Magnetospheric Convection’,Planetary Space Sci. 38, 355.Google Scholar
  68. Sergeev, V. A., Aparicio, B., Perrault, S., Malkov, M. V., and Pellinen, R. J.: 1991, ‘Structure of the Inner Plasma Sheet at Midnight During Steady Magnetospheric Convection’,Planetary Space Sci. 39, 1083.Google Scholar
  69. Sergeev, V. A., Malkov, M., and Mursula, K.: 1993, ‘Testing the Isotropic Boundary Algorithm Method to Evaluate the Magnetic Field Configuration in the Tail,J. Geophys. Res. 98, 7609.Google Scholar
  70. Sergeev, V. A., Pulkkinen, T. I., Pellinen, R. J., and Tsyganenko, N. A.: 1994, ‘Hybrid State of the Tail Magnetic Configuration During Steady Convection Events’,J. Geophys. Res. 99, 23571.Google Scholar
  71. Sergeev, V. A., Aikio, A., Bösinger, T., Brekke, A., Häkkinen, L., Kangas, J., Pellinen, R. J., and Pollari, P.: 1995, ‘Nighttime Patterns of Ionospheric Convection, Conductance, Horizontal and Field-Aligned Currents During a Steady Magnetospheric Convection Event’,J. Atmospheric Terrest. Phys., in press.Google Scholar
  72. Spence, H. E. and Kivelson, M. G.: 1990, ‘The Variation of the Plasma Sheet Polytropic Index Along the Midnight Meridian in a Finite Width Magnetotail’,Geophys. Res. Letters,17, 591.Google Scholar
  73. Tsurutani, B. T. and Gonzalez, W. D.: 1987, ‘The Cause of High-Intensity Long-Duration Continuous AE Activity (HILDCAAs): Interplanetary Alfvén Wave Trains’,Planetary Space Sci. 35, 405.Google Scholar
  74. Tsyganenko, N. A.: 1989, ‘Magnetospheric Magnetic Field Model with a Warped Tail Current Sheet’,Planetary Space Sci. 37, 5.Google Scholar
  75. Tsyganenko, N. A.: 1990, ‘Quantitative Models of the Magnetospheric Magnetic Field: Methods and Results’,Space Sci. Rev. 54, 75.Google Scholar
  76. Tsyganenko, N. A. and Stern, D. P.: 1993, ‘Birkeland Currents in the Near-Tail Plasma Sheet’,EOS Transactions 74, 257.Google Scholar
  77. Weimer, D. R., Kan, J. R., and Akasofu, S.-L: 1992, ‘Variations of the Polar Cap Potential Measured During Magnetospheric Substorms’,J. Geophys. Res. 97, 3945.Google Scholar
  78. West, H. I., Jr., Buch, R. M., and Kivelson, M. G.: 1978, ‘On the Configuration of the Magnetotail Near Midnight During Quiet and Weakly Disturbed Periods: State of the Magnetosphere’,J. Geophys. Res. 83, 3805.Google Scholar
  79. Winningham, J. D., Yasuhara, F., Akasofu, S.-I., and Heikkila, W. J.: 1975, ‘The Latitudinal Morphology of 10-eV to 10-keV Electron Fluxes During Magnetically Quiet and Disturbed Times in the 21:00–03:00 MLT Sector’,J. Geophys. Res. 80, 3148.Google Scholar
  80. Yahnin, A. G., Malkov, M. V., Sergeev, V. A., Pellinen, R. J., Aulamo, O., Vennerström, S., Friis-Christensen, E., Lassen, K., Danielsen, C., Craven, J. D., Deehr, C., and Frank, L. A.: 1994a, ‘Features of Steady Magnetospheric Convection’,J. Geophys. Res. 99, 4039.Google Scholar
  81. Yahnin, A. G., Belian, R. D., Gvozdevski, B. B., and Malkov, M. V.: 1994b, in J. R. Kan, J. D. Craven, and S.-I. Akasofu (eds.), ‘Development of the Substorm Ending the Steady Magnetospheric Convection Interval,Proceedings of the International Conference on Substorms, University of Alaska at Fairbanks, p. 601.Google Scholar
  82. Zelenyi, L. M., Kovrazhkin, R. A., and Bosqued, J. M.: 1990, ‘Velocity-Dispersed Ion Beams in the Nightside Auroral Zone: AUREOL 3 Observations’,J. Geophys. Res. 95, 12119.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • V. A. Sergeev
    • 1
    • 2
  • R. J. Pellinen
    • 3
  • T. I. Pulkkinen
    • 3
  1. 1.Institute of Physics, University of St. PetersburgRussia
  2. 2.Finnish Meteorological InstituteHelsinkiFinland
  3. 3.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations