Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 6, pp 609–618 | Cite as

Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria

  • Sergio Papa
  • Michele Lorusso
  • Nazzareno Capitanio
Article

Abstract

Various direct, indirect (kinetic and thermodynamic), and combined mechanisms have been proposed to explain the conversion of redox energy into a transmembrane protonmotive force (Δp) by enzymatic complexes of respiratory chains. The conceptual evolution of these models is examined. The characteristics of thermodynamic coupling between redox transitions of electron carriers and scalar proton transfer in cytochromec oxidase and its possible involvement in proton pumping is discussed. Other aspects dealt with in this paper are: (i) variability of ← H+/e stoichiometries, in cytochromec oxidase and cytochromec reductase and its mechanistic implications; (ii) possible models by which the reduction of dioxygen to water at the binuclear heme-copper center of protonmotive oxidases can be directly involved in proton pumping. Finally a unifying concept for proton pumping by the redox complexes of respiratory chain is presented.

Key words

Redox proton pumps redox Bohr effect respiratory chains cytochromec oxidase cytochromec reductase NADH ubiquinone oxidoreductase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artzatbanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1978).FEBS Lett. 87 180–185.PubMedGoogle Scholar
  2. Babcock, G. T., and Wikström, M. K. F. (1992).Nature (London) 356 301–309.PubMedGoogle Scholar
  3. Blair, D. F., Ellis, W. R., Wang, H., Gray, H. B., and Chan, S. I. (1985).J. Biol. Chem. 261 11524–11537.Google Scholar
  4. Blair, D. F., Gelles, J., and Chan, S. I. (1986).Biophys. J. 50 713–733.PubMedGoogle Scholar
  5. Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. C. (1977).Annu. Rev. Biochem. 46 955–1026.Google Scholar
  6. Brown, G. C. (1989).J. Biol. Chem. 264 14704–14709.PubMedGoogle Scholar
  7. Brown, G. C., and Brand, M. D. (1986).Biochem. J. 234 75–81.PubMedGoogle Scholar
  8. Brown, S., Rumbley, J.N., Moody, A.J., Thomas, J.W., Gennis, R.B., and Rich, P.R. (1994).Biochim. Biophys. Acta 1183 521–532.PubMedGoogle Scholar
  9. Capitanio, N., De Nitto, E., Villani, G., Capitanio, G., and Papa, S. (1990).Biochemistry 29 2939–2945.PubMedGoogle Scholar
  10. Capitanio, N., Capitanio, G., De Nitto, E., Villani, G., and Papa, S. (1991).FEBS Lett. 288 179–182.PubMedGoogle Scholar
  11. Chan, S. I., and Li, P. M. (1990).Biochemistry 29 1–12.PubMedGoogle Scholar
  12. Cocco, T., Lorusso, M., Di Paola, M., Minuto, M., and Papa, S. (1992).Eur. J. Biochem. 209 475–481.PubMedGoogle Scholar
  13. De Paula, J. C., Peiffer, W. E., Ingle, R. T., Centeno, J. A., Ferguson-Miller, S., and Babcock, G. T. (1990).Biochemistry 29 8702–8706.PubMedGoogle Scholar
  14. Dutton, P. L., and Wilson, D. F. (1974).Biochim. Biophys. Acta 346 165–212.PubMedGoogle Scholar
  15. Ellis, W. R., Wang, H., Blair, D. F., Gray, H. B., and Chan, S. I. (1986).Biochemistry 25 161–167.PubMedGoogle Scholar
  16. Erecinska, M., Chance, B., and Wilson, D. F. (1971).FEBS. Lett. 16 284–286.PubMedGoogle Scholar
  17. Fitzgerald, L. D. (1976).Biological Handbooks, Cell Biology (Altman, P. L., and Dittmer Katz, D., eds.), Fed. Am. Soc. Expt. Biology, Bethseda, Maryland, Vol. 1, pp. 72–89.Google Scholar
  18. Guerrieri, F., Maida, I., and Papa, S. (1981).FEBS Lett. 125 261–265.PubMedGoogle Scholar
  19. Hallen, S. (1993). Phd Thesis, Bibliotekets Reproservice, Göteberg.Google Scholar
  20. Hallen, S., and Nilsson, T. (1992).Biochemistry 31 11853–11859.PubMedGoogle Scholar
  21. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990).J. Mol. Biol. 213 899–929.PubMedGoogle Scholar
  22. Hosler, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgia, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M. J., Babcock, G. T., and Gennis, R. B. (1993).J. Bioenerg. Biomembr. 25 121–136.PubMedGoogle Scholar
  23. Hosler, J. P., Shapleigh, J. P., Tecklenburg, M. H. J., Thomas, J. W., Kim, Y., Espe, M., Fetter, J., Babcock, G. T., Alben, J. O., Gennis, R. B., and Ferguson-Miller, S. (1994).Biochemistry 33 1194–1201.PubMedGoogle Scholar
  24. Klinman, J. P., and Brenner, M. (1988). InOxidases and Related Redox Systems (King, T. E., Mason, H. S., and Morrison, M. eds.), Alan Liss, New York, pp. 227–246.Google Scholar
  25. Konstantinov, A. A., Capitanio, N., Vygodina, T. V., and Papa, S. (1992).FEBS Lett. 264 71–74.Google Scholar
  26. Kotylar, A. B., Sled, V. D., Moroz, I. A., and Vinogradov, A. D. (1990).FEBS Lett. 264 17–20.PubMedGoogle Scholar
  27. Larsen, R. W., Pam, L. P., Musser, S. M., Li, Z., and Chan, S. I. (1992).Proc. Natl. Acad. Sci. USA 89 723–727.PubMedGoogle Scholar
  28. Lawford, H. G., and Garland, P. B. (1973)Biochem. J. 136 711–720.PubMedGoogle Scholar
  29. Lemon, D. D., Calhaun, M. W., Gennis, R. B., and Woodruff, W. H. (1993).Biochemistry 32 11953–11956.PubMedGoogle Scholar
  30. Lenaz, G., Barnabei, O., Rabbi, A., and Battino, M., eds. (1990).Highlights in Ubiquinone Research, Taylor and Francis, London.Google Scholar
  31. Lorusso, M., Capuano, F., Boffoli, D., Stefanelli, R., and Papa, S. (1979).Biochem. J. 182 133–147.PubMedGoogle Scholar
  32. Lorusso, M., Cocco, T., Boffoli, D., Gatti, D., Meinhardt, S., Ohnishi, T., and Papa, S. (1989).Eur. J. Biochem. 179 535–540.PubMedGoogle Scholar
  33. Luvisetto, S., Conti, E., Buso, M. and Azzone, G. F. (1991).J. Biol. Chem. 266 1034–1042.PubMedGoogle Scholar
  34. Maison Peteri, B., and Malmström, B. G. (1989).Biochemistry 28 3156–3160.PubMedGoogle Scholar
  35. Malmström, B. G. (1985).Biochim. Biophys. Acta 811 1–12.PubMedGoogle Scholar
  36. Malmström, B. G. (1989).FEBS Lett. 250 9–21.PubMedGoogle Scholar
  37. Malmström, B. G. (1990).Chem. Rev. 90 1247–1260.Google Scholar
  38. Miki, T., and Orii, Y. (1986).J. Biol. Chem. 261 3915–3918.PubMedGoogle Scholar
  39. Mitchell, P. (1966).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn, Research Ltd., Bodmin, U.K.Google Scholar
  40. Mitchell, P. (1976).J. Theor. Biol. 62 327–367.PubMedGoogle Scholar
  41. Mitchell, P. (1987a). InAdvances in Membrane Biochemistry and Bioenergetics (Kim, C. H., Tedeschi, H., Diwan, J. J., and Salerno, J. C., eds.), Plenum, New York and London, pp. 25–52.Google Scholar
  42. Mitchell, P. (1987b).FEBS Lett. 222 235–245.PubMedGoogle Scholar
  43. Mitchell, P. (1988). InCytochrome Oxidase. Structure Function, and Physiopathology (Brunori, M., and Chance, B., eds.),Ann. N. Y. Acad. Sci. 550 185–198.PubMedGoogle Scholar
  44. Mitchell, P., and Moyle, J. (1983).FEBS Lett. 151 167–178.PubMedGoogle Scholar
  45. Mitchell, P., Moyle, J., and Mitchell, R. (1979).Methods Enzymol. 55 627–640.PubMedGoogle Scholar
  46. Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H., and Wrigglesworth, J. M. (1985).FEBS Lett. 188 1–7.PubMedGoogle Scholar
  47. Mitchell, R., and Rich, P. R. (1994).Biochim. Biophys. Acta,186 19–26.Google Scholar
  48. Mitchell, R., Mitchell, P., and Rich. P. R. (1992).Biochim. Biophys. Acta 1101 188–191.PubMedGoogle Scholar
  49. Moody, A. J., and Rich, P. R. (1990).Biochim. Biophys. Acta 1015 205–215.PubMedGoogle Scholar
  50. Murphy, M. P. (1989).Biochim. Biophys. Acta 977 123–141.PubMedGoogle Scholar
  51. Murphy, M. P., and Brand, M. D. (1988)Eur. J. Biochem. 173 645–651.PubMedGoogle Scholar
  52. Nicholls, D. G. (1974).Eur. J. Biochem. 50 305–315.PubMedGoogle Scholar
  53. Nicholls, P., and Petersen, L. C. (1974).Biochem. Biophys. Acta 357 462–467.PubMedGoogle Scholar
  54. Ohnishi, T., and Trumpower, B. L. (1980).J. Biol. Chem. 255 3278–3284.PubMedGoogle Scholar
  55. Oliveberg, M., Hallen, S., and Nilsson, T. (1991).Biochemistry 30 436–440.PubMedGoogle Scholar
  56. Papa, S. (1976).Biochim. Biophys. Acta 456 39–84.PubMedGoogle Scholar
  57. Papa, S. (1988). InOxidases and Related Redox Systems. (Mason, H. S., ed.). Elsevier Amsterdam, pp. 49–94.Google Scholar
  58. Papa, S., and Lorusso, M. (1984). InBiomembranes (Burton, R. M., and Guerra, F. C., eds.), Plenum, London, pp. 257–290.Google Scholar
  59. Papa, S., Guerrieri, F., Lorusso, M., and Simone, S. (1973).Biochimie 55 703–716.PubMedGoogle Scholar
  60. Papa, S., Lorusso, M., and Guerrieri, F. (1975).Biochim. Biophys. Acta 387 425–440.PubMedGoogle Scholar
  61. Papa, S., Guerrieri, F., and Izzo, G. (1979).FEBS Lett. 105 213–216.PubMedGoogle Scholar
  62. Papa, S., Capuano, F., Markert, M., and Altamura, N. (1980a).FEBS Lett. 177 243–248.Google Scholar
  63. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., Capuano, F., Capitanio, N., and Altamura, N. (1980b).Biochem. J. 192 203–218.PubMedGoogle Scholar
  64. Papa, S., Guerrieri, F., Izzo, G., and Boffoli, D. (1983a).FEBS Lett. 157 15–20.PubMedGoogle Scholar
  65. Papa, S., Lorusso, M., Boffoli, D., and Bellomo, E. (1983b).Eur. J. Biochem. 137 405–412.PubMedGoogle Scholar
  66. Papa, S., Guerrieri, F., and Izzo, G. (1986).Methods Enzymol. 126 331–343.PubMedGoogle Scholar
  67. Papa, S., Capitanio, N., and De Nitto, E. (1987).Eur. J. Biochem. 164 507–516.PubMedGoogle Scholar
  68. Papa, S., Lorusso, M., Cocco, T., Boffoli, D., and Lombardo, M. (1989). InHighlights in Ubiquinone Research (Lenz, G., Barnabei, O., Rabbi, A., and Battino, M., eds.), Taylor and Francis, London, pp. 122–135.Google Scholar
  69. Papa, S., Capitanio, N., Capitanio, G., De Nitto, E., and Minuto, M. (1991).FEBS Lett. 288 183–186.PubMedGoogle Scholar
  70. Pietrobon, D., Zoratti, M., and Azzone, G. F. (1983).Biochim. Biophys. Acta 723 317–321.PubMedGoogle Scholar
  71. Proteau, G., Wrigglesworth, J. M., and Nicholls, P. (1983).Biochem. J. 210 199–205.PubMedGoogle Scholar
  72. Reynafarje, B., Brand, M. D., Alexandre, R., and Lehninger, A. L. (1979).Methods Enzymol. 55 640–656.PubMedGoogle Scholar
  73. Rich, P. R. (1991).Biosci. Rep. 11 539–568.PubMedGoogle Scholar
  74. Rousseau, D. L., Ching, Y. C., and Wang, J. (1993).J. Bioenerg. Biomembr. 25 165–176.PubMedGoogle Scholar
  75. Thomas, J. W., Lemieux, L. J., Alben, J. O., and Gennis, R. B. (1993).Biochemistry 32 11173–11180.PubMedGoogle Scholar
  76. Urban, P. F., and Klingenberg, M. (1969).Eur. J. Biochem. 519–525.Google Scholar
  77. Van Gelder, B. F., Van Rijin, J. L. M. L., Schilder, G. J. A., and Wilms, J. (1977). InStructure and Function of Energy- Transducing Membranes (Van Dam, K., and Van Gelder, B. F., eds.), Elsevier North-Holland Biomedical Press, Amsterdam, pp. 61–68.Google Scholar
  78. Varotsis, C., Zhang, Y., Appelman, E.H., and Babcock, G.T. (1993).Proc. Natl. Acad. Sci. USA 90 237–241.PubMedGoogle Scholar
  79. Verkhovskaya, M., Verkhovsky, M., and Wikström, M. K. F. (1992).J. Biol. Chem. 267 14559–14562.PubMedGoogle Scholar
  80. Von Jagow, G., and Sebald, W. (1980).Annu. Rev. Biochem. 49 281–314.PubMedGoogle Scholar
  81. Vygodina, T., and Konstantinov, A. A. (1987).FEBS Lett. 219 387–392.PubMedGoogle Scholar
  82. Vygodyna, T., and Konstantinov, A. A. (1988).Ann. N. Y. Acad. Sci. 550 124–138.PubMedGoogle Scholar
  83. Vygodina, T., and Konstantinov, A. A. (1989).Biochim. Biophys. Acta 937 390–398.Google Scholar
  84. Weiss, H., Friedrich, T., Hofhaus, G., and Preis, D. (1991).Eur. J. Biochem. 197 563–576.PubMedGoogle Scholar
  85. West, I. C., Mitchell, R., Moody, A. J., and Mitchell, P. (1986).Biochem. J. 236 15–21.PubMedGoogle Scholar
  86. Westerhoff, H. V., andDancshazy, Zs. (1984).Trends Biochem. Sci. 9 112–117.Google Scholar
  87. Wikström, M. K. F. (1977).Nature (London) 266 271–273.PubMedGoogle Scholar
  88. Wikström, M. K. F. (1989).Nature (London) 338 776–778.PubMedGoogle Scholar
  89. Wikström, M. K. F., and Krab, K. (1978). InEnergy Conservation in Biological Membranes (Schäfer, G., and Klingenberg, M., eds.), Springer-Verlag, Berlin, pp. 128–139.Google Scholar
  90. Wikström, M.K.F., and Krab, K. (1979).Biochim. Biophys. Acta 549 177–222.PubMedGoogle Scholar
  91. Wikström, M. K. F., Krab, K., and Saraste, M. (1981).Cytochrome oxidase. A synthesis, Academic Press New York and London.Google Scholar
  92. Wikström, M. K. F., and Saraste, M. (1984). InBioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 49–94.Google Scholar
  93. Wilson, D. F., Lindsay, J. G., and Brocklehurst, E. S. (1972).Biochim. Biophys. Acta 256 277–286.PubMedGoogle Scholar
  94. Woodruff, W. H. (1993).J. Bioenerg. Biomembr. 25 177–188.PubMedGoogle Scholar
  95. Wrigglesworth, J. M., Elsden, J., Chapman, A., Van der Water, N., and Grahm, M. F. (1988)Biochim. Biophys. Acta 936 452–464.PubMedGoogle Scholar
  96. Wyman, J. (1968).Q. Rev. Biophys. 1 35–81.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Sergio Papa
    • 1
  • Michele Lorusso
    • 1
  • Nazzareno Capitanio
    • 1
  1. 1.Institute of Medical Biochemistry and ChemistryUniversity of BariBariItaly

Personalised recommendations