Journal of Bioenergetics and Biomembranes

, Volume 26, Issue 6, pp 599–608 | Cite as

The histidine cycle: A new model for proton translocation in the respiratory heme-copper oxidases

  • Joel E. Morgan
  • Michael I. Verkhovsky
  • Mårten Wikström
Article

Abstract

A model of redox-linked proton translocation is presented for the terminal heme-copper oxidases. The new model, which is distinct both in principle and in detail from previously suggested mechanisms, is introduced in a historical perspective and outlined first as a set of general principles, and then as a more detailed chemical mechanism, adapted to what is known about the chemistry of dioxygen reduction in this family of enzymes. The model postulates a direct mechanistic role in proton-pumping of the oxygenous ligand on the iron in the binuclear heme-copper site through an electrostatic nonbonding interaction between this ligand and the doubly protonated imidazolium group of a conserved histidine residue nearby. In the model this histidine residue cycles between imidazolium and imidazolate states translocating two protons per event, the imidazolate state stabilized by bonding to the copper in the site. The model also suggests a key role in proton translocation for those protons that are taken up in reduction of O2 to water, in that their uptake to the oxygenous ligand unlatches the electrostatically stabilized imidazolium residue and promotes proton release.

Key words

Proton-pumping cytochrome oxidase oxygen reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock, G. T., and Wikström, M. (1992).Nature (London) 356 301–309.PubMedGoogle Scholar
  2. Blair, D. F., Gelles, J., and Chan, S. I. (1986).Biophys. J. 50 713–733.PubMedGoogle Scholar
  3. Chance, B., Leigh, J. S., Jr., and Waring, A. (1977). InStructure and Function of Energy-Transducing Membranes (van Dam, K., and van Gelder, B. F., eds.), Elsevier/North-Holland, Amsterdam, pp. 1–10.Google Scholar
  4. Crofts, A. R., and Wraight, C. A. (1983).Biochim. Biophys. Acta 726 149–185.Google Scholar
  5. Gelles, J., Blair, D. F., and Chan, S. I. (1986).Biochim. Biophys. Acta 853 205–236.PubMedGoogle Scholar
  6. Gennis, R. B., Barquera, B., Hacker, B., Doren, S. R., Arnaud, S., Crofts, A. R., Davidson, E., Gray, K. A., and Daldal, F. (1993).J. Bioenerg. Biomembr. 25 195–209.PubMedGoogle Scholar
  7. Han, S., Ching, Y.-C., and Rousseau, D. L. (1990).Nature (London) 348 89–90.PubMedGoogle Scholar
  8. Hosler, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgiou, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M. J., Babcock, G. T., and Gennis, R. B. (1993).J. Bioenerg. Biomembr. 25 121–136.PubMedGoogle Scholar
  9. Karlin, K. D., Nanthakumar, A., Fox, S., Murthy, N. N., Ravi, N., Huynh, B. H., Orosz, R. D., and Day, E. P. (1974).J. Am. Chem. Soc. 116 4753–4763.Google Scholar
  10. Krab, K., and Wikström, M. (1978).Biochim. Biophys. Acta 504 200–214.PubMedGoogle Scholar
  11. Krab, K., and Wikström, M. (1979).Biochim. Biophys. Acta 548 1–15.PubMedGoogle Scholar
  12. Larsen, R. W., Pan, L-P., Musser, S. M., Li, Z., and Chan, S. I. (1992).Proc. Natl. Acad. Sci. USA 89 723–727.PubMedGoogle Scholar
  13. Lauraeus, M., and Wikström, M. (1993).J. Biol. Chem. 268 11470–11473.PubMedGoogle Scholar
  14. Lee, S. C., and Holm, R. H. (1993).J. Am. Chem. Soc. 115 11789–11798.Google Scholar
  15. Mitchell, P. (1976).Biol. Rev. 41 445–502.Google Scholar
  16. Mitchell, P. (1976).J. Theor. Biol. 62 327–367.PubMedGoogle Scholar
  17. Mitchell, P. (1981). InOf Oxygen, Fuels, and Living Matter. Part 1 (Semenza, G., ed.), Wiley, New York, 1–160.Google Scholar
  18. Mitchell, P. (1987).FEBS Lett. 222 235–245.PubMedGoogle Scholar
  19. Mitchell, P. (1988).Ann. N. Y. Acad. Sci. 550 185–198.PubMedGoogle Scholar
  20. Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H., and Wrigglesworth, J. (1985).FEBS Lett. 188 1–7.PubMedGoogle Scholar
  21. Mitchell, R., and Rich, P. (1994).Biochim. Biophys. Acta,1186 19–26.PubMedGoogle Scholar
  22. Moyle, J., and Mitchell, P. (1978).FEBS Lett. 88 268–272.PubMedGoogle Scholar
  23. Nanthakumar, A., Fox, S., Murthy, N. N., and Karlin, K. D. (1993).J. Am. Chem. Soc. 115 8513–8514.Google Scholar
  24. Papa, S. (1976).Biochim. Biophys. Acta 456 39–84.PubMedGoogle Scholar
  25. Puustinen, A., Finel, M., Virkki, M., and Wikström, M. (1989).FEBS Lett. 249 163–167.PubMedGoogle Scholar
  26. Raitio, M., and Wikström, M. (1994).Biochim. Biophys. Acta,1186 100–106.Google Scholar
  27. Rousseau, D. L., Ching, Y.-C., and Wang, J. (1993).J. Bioenerg. Biomembr. 25 165–176.PubMedGoogle Scholar
  28. Sawyer, D. T. (1991).Oxygen Chemistry, (Oxford University Press, New York and Oxford), pp. 52–81.Google Scholar
  29. Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M. (1994).Biochemistry 32 10923–10928.Google Scholar
  30. van der Oost, J., de Boer, A. P. N., de Gier, J.-W. L., Zumft, W. G., Stouthamer, A. H., and van Spanning, R. J. M. (1994).FEMS Microbiol. Lett.,121 1–10.PubMedGoogle Scholar
  31. Varotsis, C., and Babcock, G. T. (1990).Biochemistry 29 7357–7362.PubMedGoogle Scholar
  32. Verkhovsky, M. I., Morgan, J. E., and Wikström, M. (1994).Biochemistry 33 3079–3086.PubMedGoogle Scholar
  33. Vygodina, T., and Konstantinov, A. A. (1987).FEBS Lett. 219 387–392.PubMedGoogle Scholar
  34. Warshel, A., and Russell, S. T. (1984).Q. Rev. Biophys. 17 283–422.PubMedGoogle Scholar
  35. Wikström, M. (1977).Nature (London) 266 271–273.PubMedGoogle Scholar
  36. Wikström, M. (1988).FEBS Lett. 231 247–252.PubMedGoogle Scholar
  37. Wikström, M. (1989).Nature (London) 338 776–778.PubMedGoogle Scholar
  38. Wikström, M., and Casey, R. (1985).FEBS Lett. 183 293–298.PubMedGoogle Scholar
  39. Wikström, M., and Krab, K. (1978). InEnergy Conservation in Biological Membranes (Schäfer, G., and Klingenberg, M., eds.), Springer, Berlin, pp. 128–139.Google Scholar
  40. Wikström, M., and Krab, K. (1979).Biochim. Biophys. Acta 549 177–222.PubMedGoogle Scholar
  41. Wikström, M., and Saari, H. (1977).Biochim. Biophys. Acta 462 347–361.PubMedGoogle Scholar
  42. Wikström, M., Krab, K., and Saraste, M. (1981). InCytochrome Oxidase: A Synthesis Academic Press, New York and London.Google Scholar
  43. Wikström, M., Bogachev, A., Finel, M., Morgan, J. E., Puustinen, A., Raitio, M., Verkhovskaya, M. L., and Verkhovsky, M. I. (1994).Biochim. Biophys. Acta,1187 106–111.PubMedGoogle Scholar
  44. Williams, R. J. P. (1985). InThe Enzymes of Biological Membranes, Vol. 4, (Martonosi, A. N., ed.), Plenum, New York, pp. 71–110.Google Scholar
  45. Woodruff, W. H. (1993).J. Bioenerg. Biomembr. 25 177–188.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Joel E. Morgan
    • 1
  • Michael I. Verkhovsky
    • 1
  • Mårten Wikström
    • 1
  1. 1.Helsinki Bioenergetics Group, Institute of Biomedical Sciences, Department of Medical ChemistryUniversity of HelsinkiFinland

Personalised recommendations