Springer Seminars in Immunopathology

, Volume 18, Issue 4, pp 535–553 | Cite as

Immunopathology of gluten-sensitive enteropathy

  • Helge Scott
  • Ellen Nilsen
  • Ludvig M. Sollid
  • Knut E. A. Lundin
  • Jarle Rugtveit
  • Øyvind Molberg
  • Erik Thorsby
  • Per Brandtzaeg


Internal Medicine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Dawoud A, Nakshabendi I, Foulis A, Mowat AM (1992) Immunohistochemical analysis of mucosal gamma-interferon production in coeliac disease. Gut 33:1482Google Scholar
  2. 2.
    Baklien K, Brandtzaeg P, Fausa O (1977) Immunoglobulins in jejunal mucosa and serum from patients with adult coeliac disease. Scand J Gastroenterol 12:149Google Scholar
  3. 3.
    Baklien K, Fausa O, Thune PO, Gjone E (1977) Immunoglobulins in jejunal mucosa and serum from patients with dermatitis herpetiformis. Scand J Gastroenterol 12:161Google Scholar
  4. 4.
    Bartholomeusz RCA, Labrooy JT, Davidson GP, Hetzel P, Johnson RB, Shearman DJC (1990) Polymeric IgA antibody to gliadin in the serum of patients with coeliac disease. J Gastroenterol Hepatol 5:675Google Scholar
  5. 5.
    Bilenker M, Roberts AI, Brolin RE, Ebert EC (1995) Interleukin-7 activates intestinal lymphocytes. Dig Dis Sci 40:1744Google Scholar
  6. 7.
    Bodmer JG, Marsh SGE, Albert ED, Bodmer WF, Dupont B, Erlich HA, Mach B, Mayr WR, Parham P, Sasazuki T, Schreuder GMT, Strominger JL, Svejgaard A, Terasaki PI (1994) Nomenclature for factors of the HLA system, 1994. Hum Immunol 41:1Google Scholar
  7. 7.
    Bonamico M, Morellini M, Mariani P, Triglione P, Trabace S, Lulli P, Cappellacci S, Ballati G (1991) HLA antigens and antigliadin antibodies in coeliac disease. Dis Markers 9:313Google Scholar
  8. 8.
    Brandtzaeg P, Baklien K (1976) Immunohistochemical studies of the formation and epithelial transport of immunoglobulins in normal and diseased human intestinal mucosa. Scand J Gastroenterol 11 [Suppl 36]:1Google Scholar
  9. 9.
    Brandtzaeg P, Halstensen TS, Hvatum M, Kvale D, Scott H (1993) The serologic and mucosal immunologic basis of celiac disease. In: Walker WA (ed) Immunophysiology of the Gut, vol 11; Bristol-Myers Squibb/Mead Johnson Nutrition Symposia. Academic Press, London, pp 295–333Google Scholar
  10. 10.
    Bürgin Wolff A, Gaze H, Hadziselimovic F, Huber H, Lentze MJ, Nussle D, Reymond-Berthet C (1991) Antigliadin and antiendomysium antibody determination for coeliac disease. Arch Dis Child 66:941Google Scholar
  11. 11.
    Colombel JF, Mascart-Lemone F, Nemeth J, Vaerman JP, Dive C, Rembaud JC (1990) Jejunal immunoglobulins and antighadin antibody secretion in adult coeliac disease. Gut 31:1345Google Scholar
  12. 12.
    Crabtree JE, Heatley RV, Juby LD, Howdle PD, Losowsky MS (1989) Serum interleukin-2 receptor in coeliac disease: response to treatment and gluten challenge. Clin Exp Immunol 77:345Google Scholar
  13. 13.
    Ebert EC (1990) Intraepithelial lymphocytes: interferon-gamma production and suppressor/cytotoxic activities. Clin Exp Immunol 82:81Google Scholar
  14. 14.
    Ebert EC (1993) Do the CD45R0+CD8+ intestinal intraepithelial T lymphocytes have the characteristics of memory cells? Cell Immunol 147:331Google Scholar
  15. 15.
    Ebert EC (1995) Human intestinal intraepithelial lymphocytes have potent chemotactic activity. Gastroenterology 109:1154Google Scholar
  16. 16.
    Farstad IN, Halstensen TS, Lazarovits AI, Norstein J, Fausa O, Brandtzaeg P (1995) Human intestinal B-cell blasts and plasma cells express the mucosal homing receptor integrin α4β7. Scand J Immunol 42:662Google Scholar
  17. 17.
    Ferguson A (1987) Models of immunologically driven small intestinal damage. In: Marsh MN (ed) Immunopathology of the small intestine. Wiley, Chichester, pp. 225–252Google Scholar
  18. 18.
    Ferguson A (1995) The gastrointestinal tract. Allergy [Suppl 20] 50:32Google Scholar
  19. 19.
    Fry L (1992) Dermatitis herpetiformis. In: Marsh MN (ed) Coeliae Disease, Blackwell, Oxford, pp 81–104Google Scholar
  20. 20.
    Fujihashi K, Taguchi T, McGhee JR, Eldridge JH, Bruce MG, Green DR, Singh B, Kiyono H (1990) Regulatory function for routine intraepithelial lymphocytes. Two subsets of CD3+, T cell receptor-1+intraepithelial lymphocyte T cells abrogate oral tolerance. J Immunol 145:2010Google Scholar
  21. 21.
    Fujihashi K, McGhee JR, Kweon M-N, Cooper MD, Tonegawa S, Takahashi I, Hiroi T, Mestecky J, Kiyono H (1996) γ/δ T cell-deficient mice have impaired mucosal immunoglobulin A responses. J Exp Med 183:1929Google Scholar
  22. 22.
    Gjertsen HA, Lundin KEA, Sollid LM, Eriksen JA, Thorsby E (1994) T cells recognize a peptide derived fromα-gliadin presented by the celiac disease associated HLA-DQ(α1*0501,βI*0201) heterodimer. Hum Immunol 39:243Google Scholar
  23. 23.
    Gjertsen HA, Sollid LM, Ek J, Thorsby E, Lundin KEA (1994) T cells from the peripheral blood of celiac disease patients recognize gluten antigens when presented by HLA-DR, -DQ or -DP molecules. Scand J Immunol 39:567Google Scholar
  24. 24.
    Hällgren R, Colombel JF, Dahl R, Fredens K, Kruse A, Jacobsen NO, Venge P, Rambaud JC (1989) Neutrophil and eosinophil involvement of the small bowel in studies on the secretion rate and immunohistochemical localization of granulocyte granule constituents. Am J Med 86:56Google Scholar
  25. 25.
    Halstensen TS, Brandtzaeg P (1993) Activated T lymphocytes in the celiac lesion: non-proliferatioe activation (CD25) of CD4+ α/ß cells in the lamina propria but proliferation (Ki-67) of α/ß and γ/δ cells in the epithelium. Eur J Immunol 23:505Google Scholar
  26. 26.
    Halstensen TS, Scott H, Brandtzaeg P (1989) Intraepithelial T cells of the TcRγ/δ + CD8 and Vδ1/Jδ1+ phenotypes are increased in coeliac disease. Scand J Immunol 30:665Google Scholar
  27. 27.
    Halstensen TS, Farstad IN, Scott H, Fausa O, Brandtzaeg P (1990) Intraepithelial TcRγ/δ + lymphocytes express CD45RO more often than the TcRγ/δ+ counterparts in coeliac disease. Immunology 71:460Google Scholar
  28. 28.
    Halstensen TS, Scott H, Brandtzaeg P (1990) Human CD8+ intraepithelial T lymphocytes are mainly CD45RA-RBI and show increased co-expression of CD45RO in celiac disease. Eur J Immunol 20:1825Google Scholar
  29. 29.
    Halstensen TS, Hvatum M, Scott H, Fausa O, Brandtzaeg P (1992) Association of subepithelial deposition of activated complement and immunoglobulin G and M response to gluten in celiac disease. Gastroenterology 102:751Google Scholar
  30. 30.
    Halstensen TS, Scott H, Fausa O, Brandtzaeg P (1993) Gluten stimulation of coeliac mucosa in vitro induces activation (CD25) of lamina propria CD4+ T cells and macrophages but no crypt cell hyperplasia. Scand J Immunol 38:581Google Scholar
  31. 31.
    Holmes GKT, Prior P, Lane MR, Pope D, Allan RN (1989) Malignancy in coeliac disease — effect of a gluten-free diet. Gut 30:333Google Scholar
  32. 32.
    Hume DA, Allan W, Hogan PG, Doe WF (1987) Immunohistochemical characterisation of macrophages in human liver and gastrointestinal tract: expression of CD4, HLA-DR, OKMI, and the mature macrophage marker 25179 in normal and diseased tissue. J Leukoc Biol 42:474Google Scholar
  33. 33.
    Husby S, Jensenius JC, Svehag S-E (1986) Passage of undegraded dietary antigen into the blood of healthy adults. Further characterization of the kinetics of uptake and the size distribution of the antigen. Scand J Immunol 24:447Google Scholar
  34. 34.
    Hvatum M, Scott H, Brandtzaeg P (1992) Serum IgG subclass antibodies to a variety of food antigens in patients with coeliac disease. Gut 33:632Google Scholar
  35. 35.
    Johansen B, Bulls S, Vartdal F, Viken H, Eriksen JA, Thorsby E, Sollid LM (1994) Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease associated HLADQ(αl*0501,/ß1*0201) molecule. Int Immunol 6:453Google Scholar
  36. 36.
    Johansen BH, Vartdal F, Eriksen JA, Thorsby E, Sollid LM (1996) Identification of a putative motif for binding of peptides to HLA-DQ2. Int Immunol 8:177Google Scholar
  37. 37.
    Kagnoff MF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, Austin RK (1987) Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 28:995Google Scholar
  38. 38.
    Kett K, Scott H, Fausa O, Brandtzaeg P (1990) Secretory immunity in celiac disease: cellular expression of immunoglobulin A subclass and joining chain. Gastroenterology 99:386Google Scholar
  39. 39.
    Kontakou M, Sturgess RP, Przemioslo RT, Limb GA, Nelufer JM, Ciclitira PJ (1994) Detection of interferon-gamma mRNA in the mucosa of patients with coeliac disease by in situ hybridisation. Gut 35:1037Google Scholar
  40. 40.
    Kontakou M, Przemioslo RT, Sturgess RP, Limb GA, Ciclitira PJ (1995) Expression of tumor necrosis factor-α, interleukin-6, and interleukin-2 mRNA in the jejunum of patients with coeliac disease. Scand J Gastroenterol 30:456Google Scholar
  41. 41.
    Kvale D, Løvhaug D, Sollid LM, Brandtzaeg P (1988) Tumor necrosis factor-α up-regulates expression of secretory component, the epithelial receptor for polymeric Ig. J Immunol 140:3086Google Scholar
  42. 42.
    Labrooy JT, Hohmann AW, Davidson GP, Hetzel PAS, Johnson RB, Shennan DJC (1986) Intestinal and serum antibody in coeliac disease: a comparison using ELISA. Clin Exp Immunol 66:661Google Scholar
  43. 43.
    Lavö B, Knutson L, Lööf L, Odlind B, Venge P, Hällgren R (1989) Challenge with gliadin induced eosinophil and mast cell activation in the jejunum of patients with celiac disease. Am J Med 87:655Google Scholar
  44. 44.
    Lavö B, Knutson L, Lööf L, Hällgren R (1990) Gliadin challenge-induced jejunal prostaglandin E2 secretion in coeliac disease. Gastroenterology 99:703Google Scholar
  45. 45.
    Li Y, Yio XY, Mayer L (1995) Human intestinal epithelial cell-induced CD8+ T cell activation is mediated through CD8 and the activation of CD8-associated p56lck. J Exp Med 182:1079Google Scholar
  46. 46.
    Lundin KEA, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, Thorsby E, Sollid LM (1993) Gliadin-specific, HLA-DQ(αl*0501, ß*0201)-restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 178:187Google Scholar
  47. 47.
    Lundin KEA, Scott H, Fausa O, Thorsby E, Sollid LM (1994) T cells from the small intestinal mucosa of a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. Hum Immunol 41:285Google Scholar
  48. 48.
    Lundin KEA, Gjertsen HA, Scott H, Sollid LM, Thorsby E (1994) Function of DQ2 and DQ8 as HLA susceptibility molecules in celiac disease. Hum Immunol 41:24Google Scholar
  49. 49.
    MacDonald TT, Pender SL-F (1996) Cytokine-driven matrix metalloproteinase production by mucosal mesenchymal cells. Abstract of the European Medical Research Councils, Clinical Network for Gastroenterological Immunology, Workshop 5, May 31-June l, Research Council of Norway, Medical Science and Health, Oslo, abstr. no. 19Google Scholar
  50. 50.
    MacDonald TT, Spencer J (1988) Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 167:1341Google Scholar
  51. 51.
    Maimi L, Picarelli A, Boirivant M, Coletta S, Mazzilli MC, De Vincenzi M, Londei M, Auricchio S (1996) Definition of the initial immunologic modifications upon in vitro gliadin challenge in the small intestine of celiac patients. Gastroenterology 110:1368Google Scholar
  52. 52.
    Mäki M, Holm K, Collin P, Savilahti E (1991) Increase in γ/δ T cell receptor bearing lymphocytes in normal small bowel mucosa in latent coeliac disease. Gut 32:1412Google Scholar
  53. 53.
    Marie I, Holt PG, Perdue MH, Bienenstock J (1996) Class II MHC antigen (1a)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol 156:1408Google Scholar
  54. 54.
    Marsh MN (1988) Studies of intestinal lymphoid tissue. XI. The immunopathology of cell-mediated reactions in gluten sensitivity and other enteropathies. Scanning Microsc 2:1663Google Scholar
  55. 55.
    Marsh MN (1992) Whither coeliac disease? In: Marsh MN (ed) Coeliac disease. Blackwell, Oxford, pp 349–363Google Scholar
  56. 56.
    Martinen A, Mäki M (1993) Purification of fibroblast-derived celiac disease autoantigen molecules. Pediatr Res 34:420Google Scholar
  57. 57.
    Mascart-Lemone F, Cadranel S, Van den Broeck J, Dive C, Vaerman JP, Duchateau J (1988) IgA immune response patterns to gliadin in serum. Int Arch Allergy Appl Immunol 86:412Google Scholar
  58. 58.
    Mascart-Lemone F, Colombel JF, Rambaud JC, Nemeth J, Dive C, Duchateau J, Vaerinan JP (1989) Jejunal and serum IgA in adult coeliac disease. Gastroenterology 96 [Suppl]:A324Google Scholar
  59. 59.
    Molberg 0, Kett K, Scott H, Sollid LM, Thorsby E, Lundin KEA (1996) The presence of gliadin-specific HLA-DQ2 restricted T cells in the small intestinal mucosa is a common phenomenon of celiac disease (Abstract). Human Immunol 47:21Google Scholar
  60. 60.
    Monk TJ, Spencer J, Cerf Bensussan N, MacDonald TT (1988) Activation of mucosal T cells in situ with anti-CD3 antibody: phenotype, of the activated T cells and their distribution within the mucosal microenvironment. Clin Exp Immunol 74:216Google Scholar
  61. 61.
    Mosley RL, Wang J, Hamad M, Klein J (1994) Functional heterogeneity of murine intestinal intraepithelial lymphocytes: studies using TCR-αβ + IEL lines and fresh IEL isolates reveal multiple cytotoxic subsets differentiated by CD5, CD8 α/α and CD8α/ß expression. Dev Comp Immunol 18:155Google Scholar
  62. 62.
    Mowat AM, Felstein MV (1991) Intestinal graft versus host reactions in experimental animals. In: Burakoff SJ, Ferrara H (eds) Graft versus host disease, Dekker, New York, pp 205–244Google Scholar
  63. 63.
    Nathens A, Rostein OD, Dackiw APB, Marshall JC (1995) Intestinal epithelial cellls down-regulate macrophage tumor necrosis factor-alpha secretion. A mechanism for immune homeostasis in the gut-associated lymphoid tissue. Surgery 118:343Google Scholar
  64. 64.
    Nilsen EM, Lundin KEA, Krajci P, Scott H, Sollid LM, Brandtzaeg P (1995) Gluten-specific, HLADQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon-γ. Gut 37:766Google Scholar
  65. 65.
    Nilsen EM, Gjertsen HA, Jensen K, Brandtzaeg P, Lundin KE (1996) Gluten activation of peripheral blood T cells induces a Th0-like cytokine pattern in both coeliac patients and controls. Clin Exp Immunol 103:295Google Scholar
  66. 66.
    Nilsen EM, Scott H, Lundin KEA, Fausa O, Brandtzaeg P (1996) Biopsy specimens from jejunal mucosa of coeliac disease patients express high levels of IFN-γ mRNA as assessed by quantitative PCR (Abstract). Scand J Immunol 43:704Google Scholar
  67. 67.
    O'Mahony S, Vestey JP, Ferguson A (1990) Similarities in intestinal Immoral immunity in dermatitis herpetiformis without enteropathy and in coeliac disease. Lancet 335:1487Google Scholar
  68. 68.
    O'Mahony S, Arranz E, Barton JR, Ferguson A (1991) Dissociation between systemic and mucosal humoral immune responses in coeliac disease. Gut 32:29Google Scholar
  69. 69.
    Paulsen G, Lundin KEA, Gjertsen HA, Hansen T, Sollid LM, Thorsby E (1995) HLA-DQ2-restricted T-cell recognition of gluten-derived peptides in celiac disease. Influence of amino acid substitutions in the membrane distal domain of DQß1*0201. Hum Immunol 42:145Google Scholar
  70. 70.
    Penney L, Kilshaw PJ, MacDonald TT (1995) Regional variation in the proliferate rate and life-span of αßOTCR+ and γδTCR+ intraepithelial lymphocytes in the murine small intestine. Immunology 86:212Google Scholar
  71. 71.
    Phillips JO, Everson MP, Moldoveanu Z, Lue C, Mestecky J (1990) Synergistic effect of IL-4 and IFN-y on the expression of polymeric lg receptor (secretory component) and IgA binding by human epithelial cells. J Immunol 145:1740Google Scholar
  72. 72.
    Ploski R, Ek J, Thorsby E, Sollid LM (1993) On the HLA-DQ(αl*0501, ß1*0201)-associated susceptibility in celiac disease: a possible gene dosage effect of DQ01*0201. Tissue Antigens 41:173Google Scholar
  73. 73.
    Przemioslo RT, Kontakou M, Nobili V, Ciclitira PJ (1994) Raised pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α in coeliac disease mucosa detected by immunohistochemistry. Gut 35:1398Google Scholar
  74. 74.
    Rötzschke O, Falk K (1991) Naturally occurring peptide antigens derived from the MHC class-1-restricted processing pathway. Immunol Today 12:447Google Scholar
  75. 75.
    Rugtveit J, Scott H, Pfeffer PF, Bakka A, Brandtzaeg P (1996) Distribution of the B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on subsets of antigen-presenting cells in inflammatory bowel disease and coeliac disease. European Medical Research Councils, Clinical Network for Gastroenterological Immunology, Workshop 5, May 31-June 1, Research Council of Norway, Medical Science and Health, Oslo, abstr. no. 4Google Scholar
  76. 76.
    Savilahti E, Reunala T, Maki M (1992) Increase of lymphocytes bearing of γ/δ T cell receptor in the jejunum of patients with dermatitis herpetiformis. Gut 33:206Google Scholar
  77. 77.
    Schmitz J (1992) Coeliac disease in childhood. In: Marsh MN (ed) Coeliac disease. Blackwell, Oxford, pp 17–48Google Scholar
  78. 78.
    Scott H, Brandtzaeg P (1996) Endomysial antibodies. In: Shoenfeld Y, Peter JB (eds) Autoantibodies. Elsevier, Amsterdam, pp 237–244Google Scholar
  79. 79.
    Scott H, Ek J, Baklien K, Brandtzaeg P (1980) Immunoglobulin-producing cells in jejunal mucosa of children with coeliac disease on a gluten-free diet and after gluten challenge. Scand J Gastroenterol 15:81Google Scholar
  80. 80.
    Scott H, Fausa O, Thorsby E (1983) T-lymphocyte activation by a gluten fraction, glyc-gli. Studies of adult patients and healthy controls. Scand J Immunol 18:185Google Scholar
  81. 81.
    Scott H, Sollid LM, Fausa O, Brandtzaeg P, Thorsby E (1987) Expression of MHC class II subregion products by jejunal epithelium of patients with coeliac disease. Scand J Immunol 26:563Google Scholar
  82. 82.
    Scott H, Kett K, Halstensen T, Hvatum M, Rognum TO, Brandtzaeg P (1992) The Immoral immune system in coeliac disease. In: Marsh MN (ed) Coeliac disease. Blackwell, Oxford, pp 239–282Google Scholar
  83. 83.
    Selby WS, Poulter LW, Hobbs S, Jewell DP, Janossy G (1983) Heterogeneity of HLA-DR-Positive histiocytes in human intestinal lamina propria: a combined histochemical and immunohistochemical analysis. J Clin Pathol 36:379Google Scholar
  84. 84.
    Shewry PR, Tathem AS, Kasarda DD (1992) Cereal proteins and coeliac disease. In: Marsh MN (ed) Coeliac disease. Blackwell Oxford, pp 305–349Google Scholar
  85. 85.
    Sollid LM, Thorsby E (1993) HLA susceptibility genes in celiac disease: genetic mapping and role in pathogenesis. Gastroenterology 105:910Google Scholar
  86. 86.
    Sollid LM, Kvale D, Brandtzaeg P, Markussen G, Thorsby E (1987) Interferon-γ enhances expression of secretory component, the epithelial receptor for polymeric immunoglobulins. J Immunol 138:4303Google Scholar
  87. 87.
    Spencer J, Isaacson PG, Diss TC, MacDonald TT (1989) Expression of disulfide-linked and nondisulfide-linked forms of the T cell receptor γ/δ heterodimer in human intestinal intraepithelial lymphocytes. Eur J Immunol 19:1335Google Scholar
  88. 88.
    Spencer J. Isaacson PG, MacDonald TT, Thomas AJ, Walker-Smith JA (1991) γ/δ T cells and the diagnosis of coeliac disease. Clin Exp Immunol 85:109Google Scholar
  89. 89.
    Steiniger B, Falk P, Lohrmüller M, Meide PH van der (1989) Class II MHC antigens in the rat digestive system. Normal distribution and induced expression after interferon-gamma treatment in vivo. Immunology 68:507Google Scholar
  90. 90.
    Stingl G, Bergstresser PR (1995) Dendritic cells: a major story unfolds. Immunol Today 16:330Google Scholar
  91. 91.
    Sturgess RP, Macartney JC, Makgoba MW, Hung C-H, Haskard DO, Ciclitira PJ (1990) Differential up-regulation of intercellular adhesion molecule-1 in coeliac disease. Clin Exp Immunol 82:489Google Scholar
  92. 92.
    Sturgess RP, Day P, Ellis HJ, Lundin KEA, Gjertsen HA, Kantakou M, Ciclitira PJ (1994) Wheat peptide challenge in coeliac disease. Lancet 343:758Google Scholar
  93. 93.
    Teilbaum DH, Neideck BS, Lee J. Merion RM (1995) Inhibitory activity of intestinal intraepithelial lymphocytes. Surgery 118:378Google Scholar
  94. 94.
    Thomas R, Schürmann G, Lionetti P, Pender SLF, MacDonald TT (1996) T cell receptor Vβ expression in human intestine: regional variation in postnatal intestine and biased usage in fetal gut. Gut 38:190Google Scholar
  95. 95.
    Trejdosiewicz LK, Howdle PD (1995) T-cell responses and cellular immunity in celiac disease. Baillieres Clin Gastroenterol 9:251Google Scholar
  96. 96.
    Trejdosiewicz LK, Calabrese A, Smart CJ, Oakes DJ, Howdle PD, Crabtree JE, Losowsky MS, Lancaster F, Boylston AW (1991) γδ T cell receptor-positive cells of the human gastrointestinal mucosa: occurrence and V region gene expression inHelicobacrer pylori-associated gastritis, coeliac disease and inflammatory bowel disease. Clin Exp Immunol 84:440Google Scholar
  97. 97.
    Tucova L, Tlaskalova-Hogenova T, Farré MA, Karska K, Rossmann P, Kolinska J. Kocna P (1995) Molecular mimicry as a possible cause of autoimmune reactions in celiac disease? Antibodies to gliadin cross-react with epitopes on enterocytes. Clin Immunol Immunopathol 74:170Google Scholar
  98. 98.
    Unsworth DJ, Würzner R, Brown DL, Lachmann PJ (1993) Extracts of wheat gluten activate complement via the alternative pathway. Clin Exp Immunol 94:539Google Scholar
  99. 99.
    Volta U, Bonazzi C, Lazzari R, Baldoni AM, Collina A, Bianchi FB, Pisi E (1988) Immunoglobulin A antighadin antibodies in jejunal juice: markers of severe intestinal damage in coeliac children. Digestion 39:35Google Scholar
  100. 100.
    Wiser H (1995) The precipitating factor in coeliac disease. Baillieres Clin Gastroenterol 9:191Google Scholar
  101. 101.
    Zimmer KP, Poremba C, Weber P, Ciclitira PJ, Harms E (1995) Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes. Gut 36:703Google Scholar
  102. 102.
    Zhou L-J, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Helge Scott
    • 1
    • 2
  • Ellen Nilsen
    • 1
    • 2
  • Ludvig M. Sollid
    • 1
    • 2
  • Knut E. A. Lundin
    • 1
    • 2
  • Jarle Rugtveit
    • 1
    • 2
  • Øyvind Molberg
    • 1
    • 2
  • Erik Thorsby
    • 1
    • 2
  • Per Brandtzaeg
    • 1
    • 2
  1. 1.Laboratory for Immunohistochemistry and Immunopathology (LIIPAT)Institute of PathologyNorway
  2. 2.Institute of Transplantation ImmunologyUniversity of Oslo, The National HospitalOsloNorway

Personalised recommendations