, Volume 1, Issue 1, pp 1–25 | Cite as

Cellulose: a random walk along its historical path

  • David N. -S. Hon


Cellulose as a material has been widely used for centuries in all kinds of practical applications. However, its chemical composition, structure and morphology were also unknown for centuries. The modern history of cellulose chemistry actually began in 1837 when Anselme Payen chemically identified cellulose from plants. Since then, the establishment of its chemical and physical structures has undergone multitudinous periods of struggle. Until the early 1920s, many scientists believed that cellulose was made up of a few small molecules of glucose or cellobiose. Very few scientists accepted the premiss that it was a polymer. The controversial debates were continued for over ten years. Eventually, substantial experimental data provided proof that cellulose is a covalently linked, high-molecular-weight macromolecule. This fact also provided the foundation for the establishment of polymer science. Some of the historical development of chemistry and structures are briefly reviewed, and recent approaches to studying cellulose structures with new instrumentation are discussed.


Glucose Polymer Experimental Data Cellulose Physical Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambronn, B. (1911)Berhandl. Sächs. Akad. Wiss. Leipzig 63, 249.Google Scholar
  2. Astbury, W. T. (1933)Trans. Farad. Soc. 29, 193, 204.Google Scholar
  3. Atalla, R. H. (1987)The Structure of Cellulose. Characterization of the Solid States. ACS Symposium Series 340, American Chemical Society, Washington, D.C.Google Scholar
  4. Balashov, V. and Preston, R. D. (1955)Nature 176, 64.Google Scholar
  5. Beall, G. and Jörgenson, L. (1951)Text. Res. J. 21, 203.Google Scholar
  6. Beg, M. M., Aslam, J., Khan, Q. H., Butt, N. M., Rolandson, S. and Ahmed, A. U. (1974)J. Polym. Sci., Polym. Letters Ed. 12, 311.Google Scholar
  7. Berman, H. M. and Kim, S. M. (1968)Acta Cryst. B24, 897.Google Scholar
  8. Barthelemy, H. (1917)Caoutchouc & gutta-percha 14, 9274.Google Scholar
  9. Blackwell, J. and Marchessault, R. H. (1971) Infrared Spectroscopy of Cellulose. InCellulose and Cellulose Derivatives (N. Bikales and L. E. Segal, eds.). New York: Wiley-Interscience.Google Scholar
  10. Blackwell, J. (1982) The Macromolecular Organization of Cellulose and Chitin. InCellulose and Other Natural Polymer Systems (Brown, R. M., Jr., ed.). New York: Plenum Press.Google Scholar
  11. Böeseken, J. (1915)Rec. Trav. Chim. 35, 320.Google Scholar
  12. Bergmann, M. and Knehe, E. (1925)Ann. 445, 1.Google Scholar
  13. Braconnot, H. (1819)Ann. Chim. 12, 172.Google Scholar
  14. Idem. (1833)Ann. 7, 249.Google Scholar
  15. Idem. (1833)Ann. Chim. Phys. 52, 290.Google Scholar
  16. Brenner, F. al. (1948)J. Am. Chem. Soc. 70, 977.Google Scholar
  17. Brongniart, A., Pelouze, T. J., Dumas, A. B. and Hedb, C. R. (1839)Seances Acad. Sci. 8, 51–51.Google Scholar
  18. Brown, G. M. and Ley, H. A. (1965)Science 147, 1038.Google Scholar
  19. Centola, G. (1938)Gass. Chem. Ital. 68, 825.Google Scholar
  20. Chanzy, H., Dube, M. and Marchessault, R. H. (1978)Tappi 61, 81.Google Scholar
  21. Charlton, W., Haworth, W. N. and Peat, S. (1926)J. Chem. Soc., 89.Google Scholar
  22. Chu, S. S. C. and Jeffrey, G. A. (1968)Acta Cryst. B24, 830.Google Scholar
  23. Claffey, W. and Blackwell, J. (1976)Biopolymers 15, 1903.Google Scholar
  24. Colvin, J. R. (1972)Crit. Rev. Macromol. Sci. 1, 47.Google Scholar
  25. Conrad, C. C. and Stroggie, A. G. (1945)Ind. Eng. Chem. 37, 592.Google Scholar
  26. Creely, J. J., Segal, L. and Loeb, L. (1959)J. Polym. Sci. 36, 205.Google Scholar
  27. Cross, C. F. and Bevan, E. J. (1901)J. Chem. Soc. 79, 366.Google Scholar
  28. Denham, W. S. and Woodhouse, H. (1913)ibid. 103, 1735.Google Scholar
  29. Idem. (1914)ibid. 105, 2357.Google Scholar
  30. Idem. (1917)ibid. 111, 244.Google Scholar
  31. Idem. (1921)ibid. 119, 77.Google Scholar
  32. Dobb, M. G., Fernando, L. D. and Sikorski, J. (1974) Proceedings of the 8th International Congress on Electron Microscopy, Canberra, Australia, Vol.1, p. 364.Google Scholar
  33. Ellefsen, O., Gjonnes, J. and Norman. (1959)Acta. Chem. Scand. 13, 853.Google Scholar
  34. Ellefsen, O. and Norman, N. (1962)J. Polym. Sci. 58, 769.Google Scholar
  35. Ellefsen, O., Kringstad, K. and Tonnesen, B. A. (1963) InEncylopedia of X-Rays and Gamma Rays (G. L. Clark, ed.). New York: Reinhold.Google Scholar
  36. Ellis, K. C. and Warwicker, J. O. (1962)J. Polym. Sci. 56, 339.Google Scholar
  37. Fengel, D. (1970)Tappi 53, 497.Google Scholar
  38. Fengel, D. (1971)J. Polym. Sci. Part C 36, 383.Google Scholar
  39. Fengel, D. (1974)Naturwissenschaften 61, 31.Google Scholar
  40. Fischer, D. G. and Mann, J. (1960)J. Polymer Sci. 42, 189.Google Scholar
  41. Fischer, E. and Zemplen, G. (1909)Ann. 365, 1.Google Scholar
  42. Franchimont, A. N. P. (1879)Ber. 12, 1941.Google Scholar
  43. Franke, W. W. and Ermen, B. (1969)Z. Naturforsch. 24b, 918.Google Scholar
  44. Freudenberg, K. (1921)Ber. 54, 767.Google Scholar
  45. Freudenberg, K. and Braun, E. (1928)Ann. 460, 288.Google Scholar
  46. Freudenberg, K., Bruch, E. and Rau, H. (1929)Ber. 62, 3078.Google Scholar
  47. Freudenberg, K., Brach, E., Durr, W., Bolz, F. and Steinbrunn, G. (1930)ibid. 63, 1527.Google Scholar
  48. Freudenberg, K., Friedrich, K. and Bumann, I. (1932)Liegigs Ann. 494, 41.Google Scholar
  49. Freudenberg, K. and Blomqvist, C. (1935)Ber. Dtsch. Chem. Ges. 68B, 2070.Google Scholar
  50. Freudenberg, K., Plankenhorn, E. and Boppel, H. (1938)Ber. 71, 2435.Google Scholar
  51. Frey-Wyssling, A. (1936)Protoplasma 25, 261.Google Scholar
  52. Idem. (1938)Kolloiz-Z. 85, 148.Google Scholar
  53. Idem. (1938)Submikroskopische Morphologie des Protoplasmas und seiner Derivate, Berlin: Gebrüder Borntraeger.Google Scholar
  54. Frey-Wyssling, A. and Mühlethaler, K. (1963)Makromol. Chem. 62, 25.Google Scholar
  55. Friedrich, W., Knipping, P. M. and von Laue, M. (1912)Sitzungsber. Bayer. Akad. Wiss. 5, 303.Google Scholar
  56. Friese, H. and Hess, K. (1927)Justus Liebigs Ann. Chem. 456, 38.Google Scholar
  57. Frilette, V. J.,et al. (1948)J. Am. Chem. Soc. 70, 1107.Google Scholar
  58. Gay-Lussac, J. and Thenard, J. (1811)Recherches Physico-Chimiques 2, pp. 268–350.Google Scholar
  59. Gardner, K. H. and Blackwell, J. (1974a)Biopolymers 13, 1975.Google Scholar
  60. Gardner, K. H. and Blackwell, J. (1974b)Biochim. Biophys. Acta 343, 232.Google Scholar
  61. Gerngross, O., Hermann, K. and Abitz, W. (1930)Z. Physik. Chem. B10, 371.Google Scholar
  62. Green, A. G. (1904)Z. Farben-u. Textichem. 3, 97.Google Scholar
  63. Gross, S. J. and Clark, G. L. (1938)Z. Krist. A99, 357.Google Scholar
  64. Halle, E. (1934)Kolloid-Zt. 69, 324.Google Scholar
  65. Ham, J. T. and Williams, D. G. (1970)Acta Cryst. B26, 1373.Google Scholar
  66. Hanna, R. B. and Côté, W. A., Jr. (1974)Cytobiologie 10, 102.Google Scholar
  67. Haworth, W. N. (1925)Nature 116, 430.Google Scholar
  68. Idem. (1928)Helv. Chim. Acta 11, 547.Google Scholar
  69. Haworth, W. N. and Hirst, E. L. (1921)J. Chem. Soc. 119, 193.Google Scholar
  70. Haworth, W. N., Charlton, W. and Peat, S. (1926)ibid., 89.Google Scholar
  71. Haworth, W. N., Hirst, E. L. and Miller E. J. (1927)ibid., 2346.Google Scholar
  72. Haworth, W. N., Long, C. W. and Plant, J. H. T. (1927)ibid., 2809.Google Scholar
  73. Haworth, W. N. and Machemer, H. (1931)ibid., 2372.Google Scholar
  74. Hearle, J. W. S. and Greer, R. E. (1970)Textile Progress 2(4), 1.Google Scholar
  75. Hengstenberg, J. and Mark, H. Z. (1928)Kristallogr. 69, 271.Google Scholar
  76. Hermans, P. H. (1940)Proc. Nederland Akad. Weten. 43, 1.Google Scholar
  77. Idem. (1941)J. Phys. Chem. 45, 827.Google Scholar
  78. Idem. (1941)Kolloid Z. 97, 231.Google Scholar
  79. Idem. (1949)The Physics and Chemistry of Cellulose Fibers. New York: Elsevier.Google Scholar
  80. Idem. (1949)J. Polymer Sci. 4, 317.Google Scholar
  81. Hermans, P. H. and Platzek, P. (1939)Z. Physik. Chem. A185, 260, 269.Google Scholar
  82. Hermans, P. H., de Pooys, J. and Mann, C. (1943)Kolloid-Z. 102, 169.Google Scholar
  83. Hermans, P. H. and Weidinger, A. (1949)J. Appl. Phys. 19, 491.Google Scholar
  84. Herzog, R. O. (1925)Ber. 58, 1256.Google Scholar
  85. Herzog, R. O. and Jancke, W. (1920)Z. Physik 3, 196.Google Scholar
  86. Hess, K. (1924)Ann. 435, 1.Google Scholar
  87. Hess, K. and Wittelsbach, W. (1920)Z. Elektrochem. 26, 232.Google Scholar
  88. Hess, K. and Ljubitsch, N. (1928)Ber. 61, 1460.Google Scholar
  89. Hess, K. and Kiessig, H. (1944)Z. Physik. Chem. A193, 196.Google Scholar
  90. Hess, K., Mahl, H. and Gutter, E. (1957)Kolloid-Z. 155, 1.Google Scholar
  91. Hiasiwetz, H. and Habermann, J. (1871)J. Ann. Chem. Pharm. 159, 304.Google Scholar
  92. Hibbert, J. (1921)Ind. Eng. Chem. 13, 256, 334.Google Scholar
  93. Honjo, G. and Watanabe, M. (1958)Nature 181, 326.Google Scholar
  94. Howsomon, J. A. (1949)Textile Research J. 19, 152.Google Scholar
  95. Howsomon, J. A. and Sisson, W. A. (1954)Cellulose and Cellulose Derivatives, 2nd Ed. New York: Interscience, p. 244.Google Scholar
  96. Irvine, J. C. and Hirst, E. L. (1922)J. Chem. Soc. 121, 1585.Google Scholar
  97. Idem. (1923)ibid. 123, 518, 529.Google Scholar
  98. Jeffries, R., Jones, D. M., Roberts, J. G., Selby, K., Simmens, S. C. and Warwicker, J. (1969)Cell. Chem. Technol. 3, 355.Google Scholar
  99. Jones, D. W. (1958)J. Polym. Sci. 8, 1213.Google Scholar
  100. Jörgenson, L. (1950)Studies on the Partial Hydrolysis of Cellulose. Moestue, Oslo, p. 76.Google Scholar
  101. Kargin, V. A. and Michailow, M. V. (1939)Acta Physicochim. URSS. 11, 343.Google Scholar
  102. Kenner, J., Jones, D. W. and Sharpies, A. (1952)Rep. Prog. Appl. Chem. 37, 723.Google Scholar
  103. Koch, H. J. and Peterlin, A. S. (1970)Carbohyd. Res. 15, 403.Google Scholar
  104. Kratky, O. (1938)Z. Papier 56, 189.Google Scholar
  105. Idem. (1940)Angew. Chem. 53, 153.Google Scholar
  106. Kratky, O. and Mark, H. (1938)Papier-Fabr. 36, 345.Google Scholar
  107. Idem. (1937)Z. Physik. Chem. B36, 129.Google Scholar
  108. Liang, C. Y. and Marchessault, R. H. (1959)J. Poly. Sci. 37, 385.Google Scholar
  109. Liang, C. Y., Bassett, K. H., McGinnes, E. A. and Marchessault, R. A. (1960)Tappi 43, 1017.Google Scholar
  110. Lieser, T. H. (1938)Papier-Fabr. 36, 272.Google Scholar
  111. Mann, J. and Marrinan, H. J. (1958)J. Polym. Sci. 32, 357.Google Scholar
  112. Marchessault, R. H. and Sarko, A. (1967)Advances in Carbohydrate Chemistry 22, 421.Google Scholar
  113. Marchessault, R. H. and Sundararajan, P. R. (1983) InCellulose in The Polysaccharides (Aspinall, G. O., ed.), Vol. 2. New York: Academic Press.Google Scholar
  114. Marchessault, R. H. and Liang, C. Y. (1960)J. Polym. Sci. 43, 71.Google Scholar
  115. Idem. (1962)ibid. 59, 357.Google Scholar
  116. Mark, H. (1940)J. Phys. Chem. 44, 764.Google Scholar
  117. Idem. (1940)Chem. Revs. 26, 169.Google Scholar
  118. Mark, H. F. (1976)Chem. Eng. News 54, 176.Google Scholar
  119. Mark, H. and Tobolsky, A. V. (1950)Physical Chemistry of High Polymeric Systems, 2nd Edn. New York: Interscience, p. 459.Google Scholar
  120. Marx-Figini, M. and Schulz, G. V. (1966)Naturwissenschaften 53, 466.Google Scholar
  121. Mermans, P. H. (1951)Makromol. Chem. 6, 25.Google Scholar
  122. Meyer, K. H. (1950)Natural and Synthetic High Polymers. New York: Interscience, pp. 310–318.Google Scholar
  123. Meyer, K. H. (1928)Z. Angew. Chem. 41, 935.Google Scholar
  124. Idem. (1930)Kolloid-Z. 53, 8.Google Scholar
  125. Meyer, K. H. and Mark, H. (1928)Ber. 61B, 593.Google Scholar
  126. Idem. (1928)ibid. 1936.Google Scholar
  127. Idem. (1929)Z. Physik. Chem. B2, 115.Google Scholar
  128. Idem. (1930)Der Aufbau der Hochpolymeren Organischen Naturstoffe auf Grund Molekularmorphologischer Betrachtungen. Leipzig, Akadem. Verlagsger p. 264.Google Scholar
  129. Meyer, K. H. and Misch, L. (1937a)Ber. 70B, 266.Google Scholar
  130. Idem. (1937b)Helv. Chim. Acta 20, 232.Google Scholar
  131. Idem. (1940) Makromolekulare Chemie. Akadem. Verlagsges., Leipzig, 365–377.Google Scholar
  132. Michell, A. J. (1970)Carbohyd. Res. 12, 453.Google Scholar
  133. Monier-William, G. W. (1921)J. Chem. Soc. 119, 803.Google Scholar
  134. Mukherjee, S. M. and Woods, H. J. (1953)Biochim. Biophys. Acta 10, 499.Google Scholar
  135. Mühlethaler, K. (1969)J. Polym. Sci., Part C 28, 305.Google Scholar
  136. Mühlethaler, K. and Schqeiz, Z. (1960)Forstv. 30, 53.Google Scholar
  137. Nägeli, C. (1858) Die Stärkeköner, Pflanzenphysiologische Untersuchungen,2 Die Stärkekekörner.Google Scholar
  138. Nägeli, C. and Schewndener, S. (1877)Das Mikroskop, 2nd Edn. Leipzig: W. Engelmann.Google Scholar
  139. Nagasawa, T. (1937)J. Jpn. For. Soc. 19, 260.Google Scholar
  140. Neale, S. M. (1933)Trans. Faraday Soc. 29, 317.Google Scholar
  141. Nickerson, R. F. (1941)Ind. Eng. Chem. 33, 1022.Google Scholar
  142. Nickerson, R. F.,et al. (1942)ibid. 34, 1480.Google Scholar
  143. Nieduszynski, I. A. and Atkins, E. D. T. (1970)Biochim. Biophys. Acta. 222, 109.Google Scholar
  144. Nishikawa, S. and Ono, S. (1913)Proc. Math.-Phys. Soc. Tokyo 7, 131.Google Scholar
  145. Nishikawa, S. (1914)ibid. 296.Google Scholar
  146. Okamura, K. (1991) Structure of Cellulose. InWood and Cellulosic Chemistry (D. N.-S. Hon and N. Shiraishi, eds.). New York: Marcel Dekker, pp. 89–112.Google Scholar
  147. Ost, H. (1913)Ber. 34, 398.Google Scholar
  148. Idem. (1919)Angew. Chem. 32, 66.Google Scholar
  149. Ost, H. and Wilkening, L. (1910)Chem.-Zig. 34, 461.Google Scholar
  150. Payen, A. (1839)Compt. Rend. 8, 51.Google Scholar
  151. Payen, A. (1842)Quatrieme Memoire sur les Developements des Vegetaux, Extrait des Memoires de l'Academie royale des Sciences. Tome VIII des savants etrangers. Paris: Imprimerie Royale.Google Scholar
  152. Phillips, M. (1940)J. Wash. Acad. Sci. 30, 65.Google Scholar
  153. Polanyi, M. (1921)Naturwissenschaften 9, 288;Z. Physik. 7, 149.Google Scholar
  154. Polanyi, M. and Weissenberg, Z. (1922)Physik. 9, 123.Google Scholar
  155. Preston, R. D. (1962)Polymer 3, 511.Google Scholar
  156. Idem. (1971)J. Microscopy 93, 7.Google Scholar
  157. Idem. (1974)The Physical Biology of Plant Cell Walls. London: Chapman and Hall, 139–183.Google Scholar
  158. Idem. (1975)Phys. Rep. 21, 183.Google Scholar
  159. Preston, R. D. and Cronshaw, J. (1958)Nature 181, 248.Google Scholar
  160. Pringsheim, H. (1912)Z. Physiol. Chem. 78, 266.Google Scholar
  161. Idem. (1925)Naturwissenschaften 13, 1045.Google Scholar
  162. Idem. (1926)Ber. 59, 2973.Google Scholar
  163. Rånby, B. (1969)Adv. Chem. Ser. 95, 134.Google Scholar
  164. Rånby, B. G. (1958). InFundamentals of Papermaking Fibers (Balam, F., ed.). Tech. Sec. Brit. Paper and Board Makers Assoc., Kenley, Surrey, England, p. 55.Google Scholar
  165. Reid, J. D. and Dryden, E. C. (1940)Textile Colorist 62, 43.Google Scholar
  166. Richtmyer, N. K. and Hudson, C. S. (1939)J. Amer. Chem. Soc. 61, 1834.Google Scholar
  167. Roseveare, W. E. (1952)Ind. Eng. Chem. 44, 168.Google Scholar
  168. Rowland, S. O. and Roberts, E. J. (1972)J. Polym. Sci., Part A-1 10, 2447.Google Scholar
  169. Sakurada, I. and Hutino, K. (1936)Kolloid-Zt. 77, 346.Google Scholar
  170. Sakurada, I. and Okamura, S. (1937)ibid. 81, 199.Google Scholar
  171. Scallan, A. M. (1971)Textile Res. J. 41, 647.Google Scholar
  172. Sarko, A. (1976)Appl. Polym. Symp. 28, 729.Google Scholar
  173. Sarko, A. (1986) Recently X-Ray Crystallographic Studies of Celluloses. InCellulose: Structure, Modification and Hydrolysis (Young, R. A. and Rowell, R. M., eds.). New York: Wiley, pp. 29–49.Google Scholar
  174. Sarko, A. and Muggli, R. (1974)Macromol. 7, 486.Google Scholar
  175. Scherbaer, P. C., Jr. and Hussey, R. E. (1931)J. Amer. Chem. Soc. 53, 2344.Google Scholar
  176. Schorignin, P. and Semljarskaja, M. (1936)Ber. 69, 1713.Google Scholar
  177. Schultz, G. V. and Marx, M. (1954)Makromol. Chem. 14, 52.Google Scholar
  178. Idem. (1958)J. Polym. Sci. 30, 119.Google Scholar
  179. Seifriz, W. (1929)Amer. Nat. 63, 410.Google Scholar
  180. Shafizadeh, F. and McGinnis, G. D. (1971)Adv. Carbohydrate Chem. and Biochem. 26, 297.Google Scholar
  181. Skraup, L. H. and Köenig, J. (1913)Ber. 34, 115.Google Scholar
  182. Idem. (1901)Monatsh. 22, 1011.Google Scholar
  183. Spencer, C. C. (1921)Cellulsoechemie 10, 61.Google Scholar
  184. Sponsler, O. L. (1926)J. Gen. Physiol. 9, 221, 677.Google Scholar
  185. Sponsler, O. L. and Dore, W. H. (1928)Colloid Symposium Monograph 4, 171 (1926);J. Amer. Chem. Soc. 50, 1950.Google Scholar
  186. Sponsler, O. L. (1930)J. Gen. Physiol. 9, 221 (1925);Ind. Eng. Chem. 20, 1060 (1928);Technol. Chem. Papier-Zellstoff-Fabr. 28, 20 (1931);Cellulosechemie 11, 186.Google Scholar
  187. Staudinger, H. (1932)Die Hochmolekularen Organischen Verbindungen. Berlin: Springer-Verlag.Google Scholar
  188. Idem. (1961)From Organic Chemistry to Macromolecules. New York: Wiley-Interscience.Google Scholar
  189. Staudinger, H. and Fritschi, J. (1922)Helv. Chim. Acta,5, 785.Google Scholar
  190. Staudinger, H. and Lütky, M. (1925)ibid. 8, 41.Google Scholar
  191. Staudinger, H. (1926)Ber. 59, 3019.Google Scholar
  192. Stewart, O. C. (1956) InMan's Role in Changing the Face of the Earth (Thomas, W. L., Jr., ed.). Chicago: Univ. of Chicago Press, p. 11.Google Scholar
  193. Sundararajan, P. R. and Rao, V. S. R. (1968)Tetrahedron 24, 289.Google Scholar
  194. Timell, T. E. (1950)Studies on Cellulose Reactions, Diss. Stockholm: K.T.H..Google Scholar
  195. Tollens, B. (1985)Kurzes Handbuch der Kohlenhydrate, Vol. 2. Breslau: E. Trewendt, p. 252.Google Scholar
  196. Idem. (1914)Handbuch der Kohlenhydrate, Vol. II, 3rd Edn. Leipzig, J. A. Barth p. 564.Google Scholar
  197. Trogus, C. and Hess, K. (1931)Z. Phys. Chem. (Leipzig) B14, 387.Google Scholar
  198. Tsuboi, M. (1957)J. Polym. Sci. 25, 159.Google Scholar
  199. Urban, H. (1926)Cellulosechem. 7, 73.Google Scholar
  200. Vignon, L. (1899)Bull. Soc. Chim. 22, 597.Google Scholar
  201. Viswanathan, A. and Shenouda, S. G. (1971)J. Appl. Polym. Sci. 15, 519.Google Scholar
  202. Wadsworth, L. C. and Curculo, J. A. (1978) InModified Cellulosics (Rowell, R. M. and Young, R. A., eds.). New York: Academic Press.Google Scholar
  203. Walton, A. G. and Blackwell, J. (1973) InBiopolymers, Vol. 22. New York: Academic Press, p. 421.Google Scholar
  204. Wardrop, A. B. (1954)Holzforschung 8, 12.Google Scholar
  205. Warwicker, J. O., Jeffries, R., Colbran, R. L. and Robinson, R. N. (1966)A Review of the Literature on the Effect of Caustic Soda and Other Swelling Agents on the Fine Structure of Cotton (Shirley Institute Pamphlet No. 93). Manchester: The Cotton, Silk and Manmade Fibers Research Association.Google Scholar
  206. Wellard, H. J. (1954)J. Polym. Sci. 13, 471.Google Scholar
  207. Willstatter, R. and Zechmeister, L. (1913)Ber. 46, 2401.Google Scholar
  208. Zechmeister, L. and Toth, G. (1931)Ber. B64, 854.Google Scholar
  209. Zemplen, G. (1926)Ber. 59B, 1254.Google Scholar
  210. Zeronian, S. H. (1985)Cellulose Chemistry and Its Applications (Nevell, T. P. and Zeronian, S. H., eds.). UK: Ellis Horwood.Google Scholar

Copyright information

© Blackie Academic & Professional 1994

Authors and Affiliations

  • David N. -S. Hon
    • 1
  1. 1.Wood Chemistry Laboratory, Department of Forest ResourcesClemson UniversityClemsonUSA

Personalised recommendations