Journal of Muscle Research & Cell Motility

, Volume 5, Issue 4, pp 423–430 | Cite as

Actin tube formation: effects of variations in commonly used solvent conditions

  • Paul M. G. Curmi
  • Julian A. Barden
  • Cristobal G. Dos Remedios


Crystalline tubular aggregates of actin spontaneously assemble in the presence of certain of the lanthanide ions. These tubes are now known to contain a high degree of structural order and it has been suggested that they may be sensitive to small changes in the primary sequence. However, there have been no detailed studies of the effects of solution conditions associated with their formation. In this report we systematically examine the effects of lanthanide ion concentration, ionic radius, adenosine nucleotide concentration, divalent cation concentration, pH, KCl concentration and incubation time. The stringent control of these parameters leads to a high degree of predictability of the structural parameters of the tubes and will thus be of use in identifying actin isozymes.


Nucleotide Adenosine Incubation Time Solution Condition Ionic Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AEBI, U., SMITH, P. R., ISENBERG, G. & POLLARD, T. D. (1980) Structure of crystalline actin sheets.Nature 288, 296–8.Google Scholar
  2. BARDEN, J. A., CURMI, P. M. G. & DOS REMEDIOS, C. G. (1982) Differences between skeletal muscle actin from rabbit and pig.Micron 13, 379–80.Google Scholar
  3. BARDEN, J. A. & DOS REMEDIOS, C. G. (1978) Evidence for the non-filamentous aggregation of actin induced by lanthanide ions.Biochim. biophys. Acta 537, 417–27.Google Scholar
  4. BARDEN, J. A. & DOS REMEDIOS, C. G. (1979) Binding stoichiometry of gadolinium to actin: its effects on the actin-bound divalent cation.Biochem. biophys. Res. Commun. 86, 529–35.Google Scholar
  5. BARDEN, J. A., TULLOCH, P. A. & DOS REMEDIOS, C. G. (1981) Crystalline actin tubes. IV. Structural information on actin monomers obtained from computer-averaged lattice images.J. Biochem. 90, 287–90.Google Scholar
  6. CARSTEN, M. E. & MOMMAERTS, W. F. H. M. (1963) A study of actin by means of starch gel electrophoresis.Biochemistry 2, 28–34.Google Scholar
  7. CURMI, P. M. G., TULLOCH, P. A., DOS REMEDIOS, C. G. & BARDEN, J. A. (1982) Electron diffraction and computed Fourier transform study of lanthanide actin microcrystals.Micron 13, 383–4.Google Scholar
  8. DOS REMEDIOS, C. G. & BARDEN J. A. (1977) Effects of Gd(III) on G-actin: inhibition of polymerization of G-actin and activation of myosin ATPase activity by Gd-G-actin.Biochem. biophys. Res. Commun. 77, 1339–46.Google Scholar
  9. DOS REMEDIOS, C. G., BARDEN, J. A. & VALOIS, A. A. (1980a) Crystalline actin tubes. II. The effect of various lanthanide ions on actin tube formation.Biochim. biophys. Acta 624, 174–86.Google Scholar
  10. DOS REMEDIOS, C. G., BARDEN, J. A., VALOIS, A. A. & TULLOCH, P. A. (1980b) Actin tube structures formed by Gd3+ and analyzed by electron microscopy and electron diffraction. InFibrous Proteins: Scientific, Industrial and Medical Aspects (edited by PARRY, D. A. D. and CREAMER, L. K.), Vol. 2, pp. 23–32. New York: Academic Press.Google Scholar
  11. DOS REMEDIOS, C. G. & DICKENS, M. J. (1978) Actin microcrystals and tubes formed in the presence of gadolinium ions.Nature 276, 731–3.Google Scholar
  12. FINLAYSON, P. J. & DOS REMEDIOS, C. G. (1981) Difference between cardiac and skeletal muscle actins.J. molec. cell. Cardiol. 13, 1081–6.Google Scholar
  13. KISELEV, N. A., SHPITZBERG, C. L. & VAINSHTEIN, B. K. (1967) Crystallization of catalase in the form of tubes with monomolecular walls.J. molec. Biol. 25, 433–41.Google Scholar
  14. NAKAMURA, T., YAMAGUCHI, M. & YANAGISAWA, T. (1979) Comparative studies of actins from various sources.J. Biochem. 85, 627–31.Google Scholar
  15. OWEN, M. J., AUGER, J., BARBER, E. H., EDWARDS, A. J., WALSH, F. S. & CRUMPTON, M. J. (1978) Actin may be present on the lymphocyte surface.Proc. natn. Acad. Sci. USA 75, 4484–8.Google Scholar
  16. SHANNON, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst. A32, 751–67.Google Scholar
  17. SMITH, P. R., FOWLER, W. E., POLLARD, T. D. & AEBI, U. (1983) Structure of the actin molecule determined from electron micrographs of crystalline actin sheets with a tentative alignment of the molecule in the actin filament.J. molec. Biol. 167, 641–60.Google Scholar
  18. SPUDICH, J. A. & WATT, S. (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin.J. biol. Chem. 216, 4866–71.Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • Paul M. G. Curmi
    • 1
  • Julian A. Barden
    • 1
  • Cristobal G. Dos Remedios
    • 1
  1. 1.Muscle Research Unit, Department of AnatomyThe University of SydneySydneyAustralia

Personalised recommendations