Advertisement

Halogenation reactions in position 3 of quinoline-2,4-dione systems by electrophilic substitution and halogen exchange

  • Wolfgang Stadlbauer
  • Rita Laschober
  • Herbert Lutschouig
  • Gerda Schindler
  • Thomas Kappe
Organische Chemie Und Biochemie

Summary

3-Substituted 4-hydroxy-2(1H)-quinolones3,5,7 are halogenated with bromine or sulfuryl chloride to yield the quinolinediones9 or10. Reaction of3,5,7 with chloroform gives the dichloromethyl quinolinediones11. Halogen exchange leads from the chloro quinolinediones10 to fluoro quinolinedones12 and to azido quinolinediones13. Similarly the dichloro quinolinedione10 an reacts to the difluoro quinolinedione14, which is reduced to the 3-fluoro-4-hydroxyquinolone16 and reacts again with sulfuryl chloride to give the mixed 3-chloro-3-fluoroquinolinedione15.

Keywords

Fluorination 4-Hydroxy-2(1H)-quinolones, 3-alkyl/3-aryl/3-fluoro 1-Hydroxy-benzo[ij] quinolizine-3-ones, 2-alkyl/3-aryl Quinoline-2,4(1H, 3H)-diones, 3-azido-3-alkyl/3aryl, 3-bromo-3-alkyl/3-aryl, 3-chloro-3-alkyl/3-aryl, 3-fluoro-3-alkyl/3-aryl, 3-dichloromethyl-3-alkyl/3-aryl, 3-chloro-3-fluoro 

Halogenierungsreaktionen an der 3-Position von Chinolin-2,4-dion-systemen durch elektrophile Substitution und Halogenaustausch

Zusammenfassung

3-Substituierte 4-Hydroxy-2-chinolone3,5,7 reagieren mit elementarem Brom oder Sulfurylchlorid zu den 3-Halogen-chinolindionen9 oder10. Mit Chloroform reagieren die Hydroxychinolone3,5,7 zu den 3-Dichlormethylchinolondionen11. Halogenaustausch an10 führt zu den 3-Fluorchinolindionen12 und zu 3-Azidochinolindionen13. Ähnlich reagiert 3,3-Dichlorochinolindion10 an zu 3,3-Fluorchinolindion14, das zum 3-Fluor-4-hydroxychinolon16 reduziert werden kann und in weiterer Folge mit Sulfurylchlorid zum gemischten 3-Chlor-3-fluor-chinolindion15 reagiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Organic Azides in Heterocyclic Synthesis, part 16. Part 15: Roschger P., Fiala W., Stadlbauer W., J. Heterocycl. Chem. (1982) in pressGoogle Scholar
  2. [2]
    Kappe C. O., unpublishedGoogle Scholar
  3. [3]
    Malle E., Stadlbauer W., Ostermann G., Hofmann B., Leis H. J., Kostner G. M. (1990) Eur. J. Med. Chem.25: 137Google Scholar
  4. [4]
    Laschober R., Stadlbauer W. (1990) Liebigs Ann. Chem.1990: 1083Google Scholar
  5. [5]
    Kitamura S., Hashizume K., Iida T., Miyashitsa E., Shirata K., Kase H. (1986) J. Antibiot.39: 1160Google Scholar
  6. [6]
    Neuenhaus W., Budzikiewicz H., Korth H., Pulverer G. (1979) Z. Naturforsch.34 b: 313; Budzikiewicz H., Schaller U., Korth H., Pulverer G. (1979) Monatsh. Chem.110: 974Google Scholar
  7. [7]
    Ziegler E., Salvador R., Kappe Th. (1962) Monatsh. Chem.93: 1376Google Scholar
  8. [8]
    Ziegler E., Kappe Th. (1963) Monatsh. Chem.94: 447Google Scholar
  9. [9]
    Fournier C., Decombe J. (1967) Bull. Soc. Chim. Fr.1967: 3367; (1967) C. R. Acad. Sci. Paris, Ser. C.265: 1169Google Scholar
  10. [10]
    Witoszynsky Th. (1972) Ph. D. thesis. University of Graz, p. 58; Lakhvich F. A., Kozinets V. A., Rubinov D. B., Akhrem A. A. (1987) Zh. Org. Khim.23: 2626Google Scholar
  11. [11]
    Ziegler E., Salvador R., Kappe Th. (1963) Monatsh. Chem.94: 941Google Scholar
  12. [12]
    Purrington S. T., Bumgardner C. L., Lazaridis N. V., Singh P. (1987) J. Org. Chem.52: 4307Google Scholar
  13. [13]
    Visser G. W. M., Herder R. E., De Kanter F. J. J., Herscheid J. D. M. (1988) J. Chem. Soc. Perkin Trans. 11988: 1203Google Scholar
  14. [14]
    Bohlmann R. (1990) Nachr. Chem. Techn. Lab.38: 40Google Scholar
  15. [15]
    Rieux C., Langlois B., Gallo R. (1990) C. R. Acad. Sci., Ser. II310: 25; Cox D. P., Terpinsky J., Lawrynowicz W. (1984) J. Org. Chem.49: 3216Google Scholar
  16. [16]
    Liotta C. L., Harris H. P. (1974) J. Am. Chem. Soc.96: 2251Google Scholar
  17. [17]
    Zima V., Pytela O., Kavalek J., Vecera M. (1989) Coll. Czech. Chem. Commun.54: 2715Google Scholar
  18. [18]
    Stadlbauer W., Schmut O., Kappe Th. (1980) Monatsh. Chem.111: 1005; Baumgarten P., Kärgel W. (1927) Ber. Dtsch. Chem. Ges.60: 832Google Scholar
  19. [19]
    Kappe Th., Karem A. S., Stadlbauer W. (1987) J. Heterocyclic Chem.25: 857Google Scholar
  20. [20]
    Aldrich Chemie GmbH, Steinheim, FRG, catalog no. 30, 759-9Google Scholar
  21. [21]
    Asahina Y., Inubuse M. (1932) Ber. Dtsch. Chem. Ges.65: 61Google Scholar
  22. [22]
    Krauch H., Kunz W. (1976) Reaktionen der Organischen Chemie, Alfred Hüthig Verlag, Heidelberg, p. 613Google Scholar
  23. [23]
    Kappe Th., Ziegler E. (1969) Synthesis: 74Google Scholar
  24. [24]
    Kappe Th., Fritz P. F., Ziegler E. (1973) Chem. Ber.106: 1927Google Scholar
  25. [25]
    Stadlbauer W., Kappe Th. (1982) Z. Naturforsch.37 b: 1196, and references cited thereinGoogle Scholar
  26. [26]
    Stadlbauer W., Kappe Th. (1985) Monatsh. Chem.116: 1005Google Scholar
  27. [27]
    Lang G. (1972) Ph. D. thesis, Karl-Franzens University of Graz, p. 84–85Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Wolfgang Stadlbauer
    • 1
  • Rita Laschober
    • 1
  • Herbert Lutschouig
    • 1
  • Gerda Schindler
    • 1
  • Thomas Kappe
    • 1
  1. 1.Institute of Organic Chemistry, Department of Organic SynthesisKarl-Franzens-University GrazAustria

Personalised recommendations