, Volume 2, Issue 2, pp 129–144 | Cite as

Influence of hemicelluloses on the aggregation patterns of bacterial cellulose

  • K. Ingegerd Uhlin
  • Rajai H. Atalla
  • Norman S. Thompson
Research Papers


Cellulose from the bacteriumAcetobacter xylinum was used as a model system for investigating the influence of other cell wall polysaccharides on the aggregation of cellulose. The patterns of aggregation of the bacterial cellulose were modified when the cellulose was produced in the presence of hemicellulose-like saccharides. The celluloses were found to be more like the Iβ-type found in higher plant celluloses than the Iα-type in the control bacterial celluloses. The effects of isolation procedures on structure were also explored. It was found that the structures of isolated celluloses were influenced by the procedures used in isolation.


Acetobacter xylinum hemicellulose aggregation pattern fibril width crystallite size X-ray diffraction Raman spectroscopy transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspinall, G. O., Hirst, E. L., Percival, E. G. V. and Williamson, I. R. (1953)J. Chem. Soc. London 3184–188.Google Scholar
  2. Atalla, R. H. (1976)Appl. Polym. Symp. 28, 659–669.Google Scholar
  3. Atalla, R. H. (1983)J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 295–301.Google Scholar
  4. Atalla, R. H. (1989)Cellulose: Structural and Functional Aspects, (J. F. Kennedy, G. O. Phillips and P. A. Williams, eds.). Chichester; Ellis Horwood, pp. 61–73.Google Scholar
  5. Atalla, R. H. and VanderHart, D. L. (1984)Science 223, 283–285.Google Scholar
  6. Atalla, R. H. and VanderHart, D. L. (1989)Cellulose and Wood, Chemistry and Technology, Proc. 10th Cellulose Conf. (C. Schuerch, ed.) New York: Wiley Interscience, John Wiley & Sons, pp. 169–188.Google Scholar
  7. Ben-Hayyim, G. and Ohad, I. (1965)J. Cell. Biol. 25, 191–207.Google Scholar
  8. Benziman, M. (1986 and 1988) Dept. Biol. Chem., Inst. Life Sciences, The Hebrew University of Jerusalem, Israel, personal communication.Google Scholar
  9. Boylston, E. K. and Hebert, J. J. (1980)J. Appl. Polym. Sci. 25(9), 2105–2107.Google Scholar
  10. Brown, R. M., Jr., Haigler, C. H. and Cooper, K. (1982)Science 218, 1141–1142.Google Scholar
  11. Byers, E. M. (1989) An autoradiographic study of the hemicellulose distribution in the walls ofPinus resinosa tracheids. Doctoral Dissertation. The Institute of Paper Chemistry, Appleton, WI, USA. (Currently Institute of Paper Science and Technology.)Google Scholar
  12. Duckert, L., Byers, E. and Thompson, N.S. (1988)Cellulose Chem. Technol. 22(1), 29–37.Google Scholar
  13. Frey-Wyssling, A. (1976)The Plant Cell Wall, Berlin: Gebruder Borntrager.Google Scholar
  14. Hackney, J. M., VanderHart, D. L. and Atalla, R. H. (1994)Int. J. Biol. Macromol. 16(4), 215–218.Google Scholar
  15. Haigler, C. H. (1982) Alteration of cellulose assembly inAcetobacter xylinum by fluorescent brightening agents, direct dyes, and cellulose derivatives. Doctoral Dissertation. The Univer-sity of North Carolina at Chapel Hill, Chapel Hill, NC, USA.Google Scholar
  16. Haigler, C. H. (1988) Dept. Biol. Sci., Texas Tech. Univ., Lubbock, TX, USA, personal communication.Google Scholar
  17. Haigler, C. H., Brown, R. M., Jr. and Benziman, M. (1980)Science 210, 903–906.Google Scholar
  18. Haigler, C. H., White, A. R., Brown, R. M., Jr. and Cooper, K. M. (1982)J. Cell Biol. 94, 64–69.Google Scholar
  19. Harada, H. and Goto, T. (1982)Cellulose and Other Natural Polymer Systems: Structure, Biogenesis and Degradation (R. M. Brown, Jr., ed.) New York: Plenum, pp. 383–401.Google Scholar
  20. Hayashi, T., Marsden, M. P. F. and Delmer, D. (1987)Plant Physiol. 83, 384–389.Google Scholar
  21. Hestrin, S. (1963)Methods in Carbohydrate Chemistry (Whistler, ed.). Vol. III. New York: Acad. Press, pp. 4–9.Google Scholar
  22. Isogai, A. (1989) Dept. Forest Products, Fac. Agriculture, Univ. Tokyo, Japan, unpublished work.Google Scholar
  23. Kai, A. and Koseki, T. (1985)Chemistry Letters, The Chemistry Society of Japan 607–610.Google Scholar
  24. Molinarolo, S. L. (1989) Sorption of xyloglucan onto cellulose fibers. Doctoral Dissertation. The Institute of Paper Chemistry, Appleton, WI, USA. (Currently Institute of Paper Science and Technology.)Google Scholar
  25. Mullis, R. H., Thompson, N. S. and Parham, R. A. (1976)Planta (Berl.) 132, 241–248.Google Scholar
  26. Northcote, D. H. (1985)Biosynthesis and Biodégradation of Wood Components (T. Higuchi, ed.). London: Academic Press, p. 87.Google Scholar
  27. Northcote, D. H. (1989)Plant Cell Wall Polymers (N. G. Lewis and M. G. Paice, eds.). ACS Symposium Series399, 1–15.Google Scholar
  28. Philips Electronic Instruments, Inc. (1987)Instructions for Profile Fitting. Publication no. 4835.015.13900, Philips Mahwah, NJ, USA.Google Scholar
  29. Preston, R. D. (1974)The Physical Biology of Plant Cell Walls. London: Chapman and Hall.Google Scholar
  30. Preston, R. D. (1974)Ibid., p. 170.Google Scholar
  31. Sjöström, E. (1971)Wood Chemistry, Fundamentals and Applications. New York: Academic Press.Google Scholar
  32. Uhlin, K. I. (1990) The influence of hemicelluloses on the structure of bacterial cellulose. Doctoral Dissertation. The Institute of Paper Science and Technology, Atlanta, GA, USA.Google Scholar
  33. VanderHart, D. L. and Atalla, R. H. (1984)Macromolecules 17, 1465–1472.Google Scholar
  34. Wiley, J. H. (1986) Raman spectra of celluloses. Doctoral Dissertation. The Institute of Paper Chemistry, Appleton, WI, USA. (Currently Institute of Paper Science and Technology.)Google Scholar
  35. Wiley, J. H. and Atalla, R. H. (1987)Carbohydr. Res. 160, 113–129.Google Scholar

Copyright information

© Blackie Academic & Professional 1995

Authors and Affiliations

  • K. Ingegerd Uhlin
    • 1
  • Rajai H. Atalla
    • 1
  • Norman S. Thompson
    • 1
  1. 1.Institute of Paper Science and TechnologyAtlantaUSA

Personalised recommendations