Cellulose

, Volume 2, Issue 2, pp 111–127 | Cite as

Ultrastructural aspects of the acetylation of cellulose

  • Jean-François Sassi
  • Henri Chanzy
Research Papers

Abstract

An ultrastructural study of the acetylation of cellulose was achieved by subjecting well characterized cellulose samples fromValonia cell wall and tunicin tests to homogeneous and heterogeneous acetylation. The study involved transmission electron microscopy observations on negatively stained microcrystals as well as diffraction contrast images of the cross sections of wall fragments at various stages of the reaction. These observations showed that the acetylation of crystalline cellulose proceeds by a reduction of the diameters of the crystals while their lengths are reduced to a lower extent. These results were corroborated by electron and X-ray diffraction experiments that showed that during the reaction there was a rapid decrease in the intensities of the equatorial diffraction spots of cellulose, whereas those located on the meridian or close to the meridian stayed constant. A model of acetylation of the cellulose crystal is presented. It is based on a non swelling reaction mechanism that affects only the cellulose chains located at the crystal surface. In the case of homogeneous acetylation, the partially acetylated molecules are sucked into the acetylating medium as soon as they are sufficiently soluble. In heterogeneous conditions the cellulose acetate remains insoluble and surrounds the crystalline core of unreacted cellulose.

Keywords

acetylation cellulose acetate Valonia tunicin cellulose microcrystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachhuber, K. and Frösch, D. (1983) Melamine resins, a new class of water-soluble embedding media for electron microscopy.J. Microsc. 130, 1–9.Google Scholar
  2. Buras, E. M., Jr., Hobart, S. R., Hamalainen, C. and Cooper, A. S., Jr. (1957) A preliminary report on fully acetylated cotton.Textile Res. J. 27, 214–222.Google Scholar
  3. Chanzy, H. and Henrissat, B. (1983) Electron microscopy study of the enzymatic hydrolysis ofValonia cellulose.Carbohydr. Polym. 3, 161–173.Google Scholar
  4. Chanzy, H., Henrissat, B., Vuong, R. and Revol, J.-F. (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I→III inValonia.Holzforshung 40(Suppl.), 25–30.Google Scholar
  5. Chanzy, H. (1990) Aspects of cellulose structure. In Cellulose Sources and Exploitation. (J. F. Kennedy, G. O. Phillips and P. A. Williams, eds) New York: Ellis Horwood pp. 3–12.Google Scholar
  6. Conrad, C. M. and Creely, J. J. (1962) Thermal X-ray diffraction study of highly acetylated cotton cellulose.J. Polym. Sci. 58, 781–790.Google Scholar
  7. Gardner, K. H. and Blackwell, J. (1974) The structure of native cellulose.Biopolymers 13, 1975–2001.Google Scholar
  8. Glegg, R. E., Ingerick, D., Parmerter, R. R., Salzer, J. S. T. and Warburton, R. S. (1968) Acetylation of cellulose I and II studied by limiting viscosity and X-ray diffraction.J. Polym. Sci., Part A2 6, 745–773.Google Scholar
  9. Henrissat, B. and Chanzy, H. (1986) Enzymatic breakdown of cellulose crystals. InCellulose: Structure, Modification and Hydrolysis. (R. A. Young and R. M. Rowell eds) New York: Wiley Interscience, pp 337–347.Google Scholar
  10. Hess, K. and Schultze, G. (1927) Über die präparative Abscheidung von Cellulosekrystallen aus Bastfasern.Justus Liebigs Ann. Chem. 456, 55–68.Google Scholar
  11. Hess, K. and Trogus, C. (1931) Zur Kenntnis der Reaktionsweise der Cellulose.Z. Physik. Chem. B 15, 157–222.Google Scholar
  12. Hurtubise, F. G. (1962) The analytical and structural aspects of the infrared spectroscopy of cellulose acetate.Tappi J. 45, 460–465.Google Scholar
  13. Kanamaru, K. (1934) Über das Lichtbrechungsvermögen der Cellulose und ihrer Derivate. IV. Die Brechungsindices von Nitrocellulose und Acetylcellulose.Helv. Chim. Acta 17, 1436–1440.Google Scholar
  14. Kuga, S. and Brown, R. M., Jr. (1987a) Practical aspects of lattice imaging of cellulose.J. Electron Microsc. Technique 6, 349–356.Google Scholar
  15. Kuga, S. and Brown, R. M., Jr. (1987b) Lattice imaging of ramie cellulose.Polymer Commun 28, 311–314.Google Scholar
  16. Malm, C. J., Tanghe, L. J. and Laird, B. C. (1946) Preparation of cellulose acetate. Action of sulfuric acid.Ind. Eng. Chem. 38, 77–82.Google Scholar
  17. Revol, J.-F. (1982) On the cross-sectional shape of cellulose crystallites inValonia ventricosa.Carbohydr. Polym. 2, 123–134.Google Scholar
  18. Revol, J.-F. and Goring, D. A. I. (1983) Directionality of the fibrec axis of cellulose crystallites in microfibrils ofValonia ventricosa.Polymer 24, 1547–1550.Google Scholar
  19. Revol, J.-F. (1985) Change of thed spacing in cellulose crystals during lattice imaging.J. Mater. Sci. Lett. 4, 1347–1349.Google Scholar
  20. Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. G. (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension.Int. J. Biol. Macromol. 14, 170–172.Google Scholar
  21. Serad, G. A. (1985) in Encyclopedia of Polymer Science and Engineering, Volume 3 (H. F. Mark, N. M. Bikales, C. G. Overberger and G. Menges eds) New York: Wiley Interscience, pp. 200–226.Google Scholar
  22. Sisson, W. A. (1938) X-ray diffraction behavior of cellulose derivatives.Ind. Eng. Chem. 30, 530–537.Google Scholar
  23. Sprague, B. S., Riley, J. L. and Noether, H. D. (1958) Factors influencing the crystal structure of cellulose triacetate.Textile Res. J. 28, 275–287.Google Scholar
  24. Staudinger, H., In den Birken, K.-H.and Staudinger, M. (1953) Über den micellaren oder makromolekularen Bau der Cellulosen.Makromol. Chem. 9, 148–187.Google Scholar
  25. Sugiyama, J., Harada, H., Fujiyoshi, Y. and Uyeda, N. (1985a) Observations of cellulose microfibrils inValonia macrophysa by high resolution electron microscopy.Mokuzai Gakkaishi 31, 61–67.Google Scholar
  26. Sugiyama, J., Harada, H., Fujiyoshi, Y. and Uyeda, N. (1985b) Lattice imaging from ultrathin sections of cellulose microfibrils in the cell wall ofValonia macrophysa Kütz.Planta 166, 161–168.Google Scholar
  27. Sugiyama, J., Vuong, R. and Chanzy, H. (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall.Macromolecules 24, 4168–4175.Google Scholar
  28. Tanghe, L. J., Genung, L. B. and Mench, J. W. (1963) Cellulose acetate. Acetylation of cellulose. In Methods in Carbohydrate Chemistry, Volume III, Cellulose (R. L. Whistler, J. W. Green, J. N. BeMiller and M. L. Wolfrom eds.) New York: Academic Press, pp. 193–198.Google Scholar
  29. Van Daele, Y., Revol, J.-F., Gaul, F. and Goffinet, G. (1992) Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthiapapillosa, Ascidiacea, Urochordata).Biol. Cell 76, 87–96.Google Scholar

Copyright information

© Blackie Academic & Professional 1995

Authors and Affiliations

  • Jean-François Sassi
    • 1
    • 2
  • Henri Chanzy
    • 1
    • 2
  1. 1.Centre de Recherches sur les Macromolécules Végétales, (CERMAV-CNRS)Grenoble Cédex 9France
  2. 2.The Joseph Fourier University of GrenobleFrance

Personalised recommendations