Advertisement

Catalysis Letters

, Volume 25, Issue 1–2, pp 61–74 | Cite as

Ruthenium supported on zeolite A: preparation and characterisation of a stable catalyst for ammonia synthesis

  • J. Wellenbüscher
  • M. Muhler
  • W. Mahdi
  • U. Sauerlandt
  • J. Schütze
  • G. Ertl
  • R. Schlögl
Article

Abstract

Reaction of Ru(NH3)6Cl3 with Na-A and K-A zeolites yielded oligomeric amino-oxo-complexes supported on the zeolite. Controlled thermal activation under hydrogen converted the precursor in a two-step reaction into an active catalyst with good long-term stability and resistance against small doses of oxygen poison. Several nanometers sized Ru metal particles are chemically bonded to the zeolite surface which provides in the K form an alkali promoter at the metal-zeolite interface. Extensive oxidation breaks the metal-support anchoring and re-reduction produces Ru metal particles sintering rapidly into large metal crystals with only small residual catalytic activity.

Keywords

Ammonia synthesis supported ruthenium catalyst dispersed ruthenium instationary kinetics lifetime effects ruthenium oxidation surface analysis XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Ozaki and K. Aika, in:Catalysis, Science and Technology, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1985).Google Scholar
  2. [2]
    US Patent, 4,163,775, British Petroleum (1979).Google Scholar
  3. [3]
    W. Mahdi, U. Sauerlandt, J. Wellenbüscher, J. Schütze, M. Muhler, G. Ertl and R. Schlögl, Catal. Lett. 14 (1992) 339.Google Scholar
  4. [4]
    L.E. Pedersen and J.H. Lunsford, J. Catal. 61 (1980) 39.Google Scholar
  5. [5]
    J.C.S. Wu, J.G. Goodwin Jr. and M. Davis, J. Catal. 125 (1990) 488.Google Scholar
  6. [6]
    Y. Okamoto, M. Ogawa, A. Maezawa and T. Imanka, J. Catal. 112 (1988) 427.Google Scholar
  7. [7]
    L. Puppe, in:Ullmann Encyclopedia of Industrial Chemistry, Vol. 17 (Verlag Chemie, Weinheim, 1988).Google Scholar
  8. [8]
    K. Aika, M. Kuramaska, T. Oma, O. Kato, H. Matsuda, N. Watanabe, K. Yamazaki, A. Ozaki and T. Onishi, Appl. Catal. 28 (1986) 57.Google Scholar
  9. [9]
    K. Aika, A. Ohya, A. Ozaki, Y. Inoue and I. Yasumori, J. Catal. 92 (1985) 305.Google Scholar
  10. [10]
    W. Mahdi, J. Schütze, G. Weinberg, R. Schoonmaker, R. Schlögl and G. Ertl, Catal. Lett. 11 (1992) 19.Google Scholar
  11. [11]
    J. Wellenbüscher, U. Sauerlandt, W. Mahdi, G. Ertl, and R. Schlögl, Surf. Interf. Anal. 18 (1992) 650.Google Scholar
  12. [12]
    C. Egawa, S. Naito and K. Tamaru, Surf. Sci. 138 (1984) 279.Google Scholar
  13. [13]
    J.J. Verdonk, P.A. Jacobs, M. Genet and G. Poncelet, J. Chem. Soc. Faraday Trans. I 76 (1980) 403.Google Scholar
  14. [14]
    C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.M. Raymond and L.H. Gale, Surf. Interf. Anal. 3 (1981) 211.Google Scholar
  15. [15]
    D.J. Elliot and J.H. Lunsford, J. Catal. 57 (1979) 11.Google Scholar
  16. [16]
    M. Muhler, Z. Paal and R. Schlögl, Appl. Surf. Sci. 47 (1991) 281.Google Scholar
  17. [17]
    L. Atanasoska, W.E. O'Grady, R.T. Atanasoski and F.H. Pollak, Surf. Sci 202 (1988) 142.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • J. Wellenbüscher
    • 1
  • M. Muhler
    • 1
  • W. Mahdi
    • 1
  • U. Sauerlandt
    • 2
  • J. Schütze
    • 1
  • G. Ertl
    • 1
  • R. Schlögl
    • 2
  1. 1.Fritz Haber Institut der Max-Planck GesellschaftBerlin 33Germany
  2. 2.Institut für Anorganische Chemie der Universität FrankfurtFrankfurtGermany

Personalised recommendations