Catalysis Letters

, Volume 40, Issue 3–4, pp 207–214 | Cite as

Dehydrogenation and aromatization of methane in the absence of oxygen on Mo/HZSM-5 catalysts before and after NH4OH extraction

  • Yide Xu
  • Wei Liu
  • She-Tin Wong
  • Linsheng Wang
  • Xiexian Guo


Mo/HZSM-5 catalysts show good catalytic reactivity in the absence of oxygen for the dehydrogenation and aromatization of methane at 973 K. The active Mo species were investigated by combining catalytic studies on Mo/HZSM-5 catalysts before and after NH4OH extraction with XRD, BET, NH3-TPD and TPR analysis. The XRD patterns show that Mo species are well dispersed on the zeolite surface. The specific surface areas decrease with increasing Mo loading but they can be restored to a large extent by NH4OH extraction. NH3-TPD results suggest that the Mo species prefer to deposit on the strong acid sites of HZSM-5 zeolite. TPR profiles show that there is a kind of Mo species which is easily reduced. No TPR peaks could be obviously observed if the Mo/ HZSM-5 catalysts were extracted by NH4OH solution. The results of NH4OH extraction experiment and other relevant characterization studies suggest that there are several kinds of Mo species deposited on the surface. By referring to the Mo species on Al2O3 supported MoO3 samples, we propose that the dissolvable Mo species in NH4OH solution are MoO3 crystallites and their aggregates in octahedral coordination, while the unsoluble Mo species mainly are Al2(MoO4)3 and MoO 4 2− in tetrahedrally coordinated form. The catalytic performance of Mo/HZSM-5 catalysts before and after NH4OH extraction illustrates that Mo species in small MoO3 crystallites with octahedral coordination form are active for methane activation in the absence of oxygen on Mo/HZSM-5 catalysts, while Mo species in tetrahedrally coordinated form is less active for the reaction.


Mo/HZSM-5 Mo species MoO3 crystallites Al2(MoO4)3 crystallites methane activation NH4OH extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Yurchak, S.E. Voltz and J.P. Warner, Ind. Eng. Chem. Proc. Res. Devel. 18 (1979) 527.Google Scholar
  2. [2]
    W.W. Kaeding, C. Chu, L.B. Young, B. Weinstein and S.A. Butter, J. Catal. 67 (1981) 159.Google Scholar
  3. [3]
    J. Valyon and A. Meszaros-Kirs, in:Zeolites: Facts, Figure, Future, Studies in Surface Science and Catalysis, Vol. 49, eds. P.A. Jacobs and R.A. van Santen (Elsevier, Amsterdam, 1989) p. 1015.Google Scholar
  4. [4]
    N. Davidova, P. Kovacheva and D. Shopov, in:Proc. 7th Int. Zeolite Conf., eds. Y. Murakami, A. Lijima and J.W. Ward (Kodansha, Tokyo, 1986) p. 811.Google Scholar
  5. [5]
    L. Wang, J. Huang, L. Tao, Y. Xu, M. Xie and G. Xu, Catal. Lett. 21 (1993) 35.Google Scholar
  6. [6]
    Y. Xu, S. Liu, L. Wang, M. Xie and X. Quo, Catal. Lett. 30 (1995) 135.Google Scholar
  7. [7]
    L. Wang, Y. Xu, M. Xie, S. Liu and L. Tao, Stud. Surf. Sci. Catal. 94 (1995) 495.Google Scholar
  8. [8]
    F. Solymosi, A. Erdöhelyi and A. Szoke, Catal. Lett. 32 (1995) 43.Google Scholar
  9. [9]
    L. Chen, L. Lin, Z. Xu, X. Li and T. Zhang, J. Catal. 157 (1995) 190.Google Scholar
  10. [10]
    Y. Xu, Y. Shu, L. Wang, M. Xie and X. Guo, Catal. Lett. 35 (1995) 233.Google Scholar
  11. [11]
    S.T. Wong, Y. Xu and X. Guo, Appl. Catal. A 136 (1996) 7.Google Scholar
  12. [12]
    S.T. Wong, Y. Xu, L. Wang and M. Xie, Catal. Lett. 38 (1996) 39.Google Scholar
  13. [13]
    N. Giordano, J.C.J. Bart, A. Vaghi, A. Castellan and G. Martinotti, J. Catal. 36 (1975) 81.Google Scholar
  14. [14]
    N.K. Nag, J. Catal. 92 (1985) 432.Google Scholar
  15. [15]
    C.V. Caceres, J.L.G. Fierro, A. Lopez Agudo, M.N. Blanco and H.J. Thomas, J. Catal. 95 (1985) 501.Google Scholar
  16. [16]
    D.S. Zingg, L.E. Makovsky, R.E. Tischer, F.R. Brown and D.M. Hercules, J. Phys. Chem 84 (1980) 2898.Google Scholar
  17. [17]
    G.D. Sun, T.Y. Yu, Q. Lu, Y. Jiao, L.G. Ren and F.S. Yan, J. Catal. (Chinese) 14 (1993) 62.Google Scholar
  18. [18]
    D.L. Zhang, X.Q. Guo, X.L. Zeng and H.F. Xu, Chem. Anal. (Chinese) 5 (1977) 383.Google Scholar
  19. [19]
    F.E. Massoth, Adv. Catal. 27 (1979) 265.Google Scholar
  20. [20]
    J. Medema, C. van Stam, V.H.J. de Beer, A.J.A. Konings and D.C. Koningsberger, J. Catal. 53 (1978) 386.Google Scholar
  21. [21]
    P. Arnoldy, J.A.M. van den Heijkant, G.D. de Bok and J.A. Moulijn, J. Catal. 92 (1985) 35.Google Scholar
  22. [22]
    Z.B. Wei, Q. Xin, et al., Catal. Lett. 11 (1991) 365.Google Scholar
  23. [23]
    A. Ezzamarty, E. Catherine, D. Cornet and J.F. Hemidy, in:Zeolites: Facts, Figure, Future, Studies in Surface Science and Catalysis, Vol. 49B, eds. P.A. Jacobs and R.A. van Santen (Elsevier, Amsterdam, 1989) p. 1025.Google Scholar
  24. [24]
    J. Sanz, V. Fornes and A. Corma, J. Chem. Soc. Faraday Trans. 184 (1988) 3113.Google Scholar
  25. [25]
    K.C. Khulbe, R.S. Mann and C.D. Ajaka, Zeolites 13 (1993) 572.Google Scholar
  26. [26]
    N.Y. TopsØe, K. Pedersen and E.G. Derouane, J. Catal. 70 (1981) 41.Google Scholar
  27. [27]
    Y. Yang, X. Guo, M. Deng, L. Wang and Z.H. Fu, in:Zeolites as Catalysts, Sorbents and Detergent Builders, eds. H.G. Karge and J. Weitkamp (Elsevier, Amsterdam, 1989) p. 849.Google Scholar
  28. [28]
    B.S. Kwak and W.M.H. Sachtler, J. Catal. 145 (1994) 456.Google Scholar
  29. [29]
    L. Balkrishnan, B.S. Bao, S.G. Hedge, A.N. Kotasthane, S.B. Kulkarni and P. Ratnaswamy, J. Mol. Catal. 17 (1982) 261.Google Scholar
  30. [30]
    S. Rajagopol, J.A. Marzari and R. Miranda, J. Catal. 151 (1995) 192.Google Scholar
  31. [31]
    P. Ratnasamy, A.V. Ramaswamy, K. Banerjee, D.K. Sharma and N. Ray, J. Catal. 38 (1975) 19.Google Scholar
  32. [32]
    G.J. Kramer, R.A. van Santen, C.A. Emeis and A.K. Nowak, Nature 363 (1993) 529.Google Scholar
  33. [33]
    J. Sauer, Nature 363 (1993) 493.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Yide Xu
    • 1
  • Wei Liu
    • 1
  • She-Tin Wong
    • 1
  • Linsheng Wang
    • 1
  • Xiexian Guo
    • 1
  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople's Republic of China

Personalised recommendations