Catalysis Letters

, Volume 28, Issue 1, pp 41–52 | Cite as

The reaction of CO2 with CH4 to synthesize H2 and CO over nickel-loaded Y-zeolites

  • Geon Joong Kim
  • Dong-Su Cho
  • Kwang-Ho Kim
  • Jong-Ho Kim


Nickel metal introduced into Y-zeolite exhibited a high catalytic activity in the dehydro-genation of methane and in the hydrogenation of carbon dioxide with methane to obtain hydrogen and CO at about 850 K. The activity strongly depended on the nickel amount in NaY, and the catalytic properties were influenced by the kind of cations in the Y-zeolite. The higher CO2 conversion was obtained over Ni supported on non-acidic zeolites.


nickel Y-zeolite ion exchange hydrogenation of carbon dioxide methane hydrogen carbon monoxide acid strength electrostatic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.R. Rostrup-Nielsen, in:Catalysis, Vol. 5, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1984) p. 1.Google Scholar
  2. [2]
    J.R. Rostrup-Nielsen, in:Methane Conversion, eds. D.M. Bibby, C.D. Chang, R.F. Howe and S. Yurchak (Eisevier, Amsterdam, 1988) p. 73.Google Scholar
  3. [3]
    J. Nakamura, S. Umeda, K. Kubushiro, T. Ohashi, K. Kunimori and T. Uchijima, Shokubai (Catalyst) 33 (1991) 99.Google Scholar
  4. [4]
    G.J. Kim, S.J. Jung, T.J. Kim and L.M. Kwon, J. Korean Inst. Chem. Eng. (Hwahak Konghak) 25 (1987) 477.Google Scholar
  5. [5]
    M.A. Vannice, J. Catal. 44 (1976) 152.Google Scholar
  6. [6]
    S. Bhatia, J.M. Mathews and N.N. Bakhshi, Can. J. Chem. Eng. 56 (1978) 575.Google Scholar
  7. [7]
    T. Baba, G.J. Kim and Y. Ono, J. Chem. Soc. Faraday Trans. 88 (1992) 891.Google Scholar
  8. [8]
    S.J. Tauster, S.C. Fung and R.L. Garten, J. Am. Chem. Soc. 4 (1978) 170.Google Scholar
  9. [9]
    C.P. Huang and J.T. Richardson, J. Catal. 51 (1978) 1.Google Scholar
  10. [10]
    R.A. Della Betta and M. Boudart, in:Proc. 5th Int. Congr. on Catalysis (Eisevier, Amsterdam, 1973) p. 1329.Google Scholar
  11. [11]
    J.W. Ward, in:Zeolite Chemistry and Catalysis, ed. J.A. Rabo, ACS Mono. 171 (Am. Chem. Soc., Washington, 1976) p. 118.Google Scholar
  12. [12]
    J.W. Ward, J. Catal. 10 (1968) 34.Google Scholar
  13. [13]
    D.S. Park, J.R. Lee and J.T. Kim, J. Korean Inst. Chem. Eng. (Hwahak Konghak) 27 (1989) 723.Google Scholar
  14. [14]
    G.N. Sauvion, M.F. Guillex, J.F. Tempere and D. Delafosse, in:Metal Microstructure in Zeolite, Studies in Surface Science and Catalysis, Vol. 12, eds. P.A. Jacobs, N.I. Jaeger, P. Jiru and G. Schulz-Ekloff (Elsevier, Amsterdam, 1982) p. 229.Google Scholar
  15. [15]
    G.A. Martin, M. Primet and J.A. Dalmon, J. Catal. 53 (1978) 321.Google Scholar
  16. [16]
    J.A. Dalmon and G.A. Martin, J. Chem. Soc. Faraday Trans. 10 (1979) 11.Google Scholar
  17. [17]
    S. Fujita, H. Terunuma, M. Nakamura and N. Takezawa, Ind. Eng. Chem. Res. 30 (1991) 146.Google Scholar
  18. [18]
    C.N. Satterfield,Heterogeneous Catalysis in Practice (McGraw-Hill, New York, 1980) p. 280.Google Scholar
  19. [19]
    A.B. Anderson, J. Am. Chem. Soc. 99 (1977) 696.Google Scholar
  20. [20]
    B. Kneale and J.R.H. Ross, Faraday Trans. I 79 (1983) 157.Google Scholar
  21. [21]
    J.G. McCarty and H. Wise, J. Catal. 57 (1979) 406.Google Scholar
  22. [22]
    S.M. Davis, F. Zaera and G. Somorjai, J. Catal. 77 (1982) 439.Google Scholar
  23. [23]
    C.A. Bernardo and D.L. Trimm, Carbon 17 (1979) 115.Google Scholar
  24. [24]
    J.L. Falconer and A.E. Zagli, J. Catal. 62 (1980) 280.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Geon Joong Kim
    • 2
    • 1
  • Dong-Su Cho
    • 2
  • Kwang-Ho Kim
    • 3
  • Jong-Ho Kim
    • 4
  1. 1.Department of Chemical EngineeringInha UniversityInchonKorea
  2. 2.Inorganic MaterialInha UniversityInchonKorea
  3. 3.Department of Industrial ChemistryInha Junior Technical CollegeInchonKorea
  4. 4.Department of ChemistryTokyo Institute of TechnologyTokyoJapan

Personalised recommendations