Monatshefte für Chemie / Chemical Monthly

, Volume 125, Issue 5, pp 553–563 | Cite as

Cycloadditions of nitrile oxides and nitrones to 4,4-methylene-1-methylpiperidine: Studies in regio- and stereoselectivity

  • L. Fišera
  • F. Sauter
  • J. Fröhlich
  • Y. Feng
  • P. Ertl
  • K. Mereiter
Organische Chemie Und Biochemie

Summary

A series of spiro-substituted isoxazole derivatives were synthesized by 1,3-dipolar cycloadditions of nitrile oxides and nitrones to 4,4-methylene-1-methylpiperidine. Since nmr studies confirmed that only one regioisomer was formed selectively, semi-empirical quantum mechanical methods (AM1) were used to rationalize this regiochemical preference via calculation and inspection of HOMO-LUMO-energy and coefficients. X-ray structure analysis carried out for one of these products showed the occurrence of only one stereoisomer, explicable by comparing AM1-calculated ΔHf-values of all possible cycloadducts.

Keywords

1,3-Dipolar cycloaddition Nitrile oxide Nitrone 4,4-Methylene-1-methylpiperidine AM1 calculations 

Cycloadditionen von Nitriloxiden und Nitronen an 4,4-Methylen-1-methylpiperidin: Untersuchungen zur Regio- und Stereoselektivität

Zusammenfassung

Eine Reihe von spiro-substituierten Isoxazolderivaten wurden durch 1,3-dipolare Cycloaddition von Nitriloxiden und Nitronen an 4,4-Methylen-1-methylpiperidin erhalten. Da NMR-Studien ergaben, daß dabei nur eine der beiden denkbaren regioisomeren Strukturen entsteht, wurde versucht, diese regiochemische Preferenz durch Berechnung und Vergleich von aus halb-empirischen quantenmechanischen Methoden (AM1) ermittelten HOMO-LUMO-Energien und Koeffizienten zu erklären. Zusätzlich wurde an einem dieser Produkte dessen Stereochemie mittels Röntgenstrukturanalyse als einheitlich festgestellt, interpretierbar durch Vergleich der AM1-ermittelten ΔHf-Werte der in Frage kommenden Cycloaddukte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Huisgen R. (1984) 1,3-Dipolar Cycloadditions — Introduction, Survey, Mechanism. In: Padwa A. (ed.) 1,3-Dipolar Cycloaddition Chemistry, Vol. 1. Wiley, New York, p 1Google Scholar
  2. [2]
    Torrsell K. B. G. (1988) Use of Nitrile Oxides, Nitrones and Silyl Nitronates in Organic Synthesis — Novel Strategies in Synthesis. Verlag Chemie, New YorkGoogle Scholar
  3. [3]
    Oravec P., Fišera L., Ertl P., Vegh D. (1991) Monatsh. Chem.122: 221Google Scholar
  4. [4]
    Oravec P., Fišera L., Goljer I., Ertl P. (1991) Monatsh. Chem.122: 977Google Scholar
  5. [5]
    Fišera L., Konopikova M., Ertl P., Pronayova N. Monatsh. Chem. (in press)Google Scholar
  6. [6]
    Stanetty P., Fröhlich H., Sauter F. (1986) Monatsh. Chem.117: 69Google Scholar
  7. [7]
    Sauter F., Stanetty P., Fröhlich H., Ramer W. (1987) Heterocycles26: 2639Google Scholar
  8. [8]
    Sauter F., Stanetty P., Fröhlich H. (1987) Heterocycles26: 2657Google Scholar
  9. [9]
    Fröhlich H., Gmeiner G., Sauter F. (1990) Journal f. Praktische Chemie332: 995Google Scholar
  10. [10]
    Longeon A., Guyot M., Vacelet J. (1990) Experientia46: 548Google Scholar
  11. [11]
    James D. M., Kunze H. B., Faulkner D. J. (1991) J. Nat. Prod.54: 1137Google Scholar
  12. [12]
    Kobayashi J., Tsuda M., Agemi K., Shigemori H., Ishibashi M., Sasaki T., Mikami Y. (1991) Tetrahedron47: 6617Google Scholar
  13. [13]
    Howe K., Sheltow B. R. (1990) J. Org. Chem.55: 4603Google Scholar
  14. [14]
    Guarna A., Branchi A., DeSarlo F., Goti A., Perriccinoli F. (1988) J. Org. Chem.53: 2426Google Scholar
  15. [15]
    Cordero F. M., Brandi A., Querci C., Goti A., De Sarlo F., Guarna A. (1990) J. Org. Chem.55: 1762Google Scholar
  16. [16]
    Paquette L. A., Underiner T. L., Gallucci J. C. (1992) J. Org. Chem.57: 86Google Scholar
  17. [17]
    Thomsen I., Torsell K. B. G. (1988) Acta Chem. Scand.B42: 303Google Scholar
  18. [18]
    Caramella P., Grünanger P. (1984) Nitrile Oxides and Nitrile Imines. In: Padwa A. (ed.) 1,3-Dipolar Cycloaddition Chemistry, Vol. 1 Wiley, New York, p. 292Google Scholar
  19. [19]
    Sustmann R., Huisgen R., Huber H. (1967) Chem. Ber.100: 1802Google Scholar
  20. [20]
    DeAmici M., Frolund B., Hjeds H., Krogsgaard-Larsen P. (1991) Eur J. Med. Chem.26: 625Google Scholar
  21. [21]
    Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P. (1985) J. Am. Chem. Soc.107: 3902Google Scholar
  22. [22]
    Huisgen R. (1981) Pure Appl. Chem.53: 171Google Scholar
  23. [23]
    Senda Y., Okamura K., Kuwahara M., Ide M., Hoh H., Ishiyama J. Y. (1992) J. Chem. Soc. Perkin Trans.2: 799Google Scholar
  24. [24]
    Baran J., Mayr H. (1988) J. Org. Chem.54: 5774Google Scholar
  25. [25]
    Sheldrick, G. M. (1986) SHELXS86. Program for the Solution of Crystal Structures from Diffraction Data. Univ. of Göttingen, FRGGoogle Scholar
  26. [26]
    Sheldrick, G. M. (1976) SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, EnglandGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • L. Fišera
    • 2
  • F. Sauter
    • 1
  • J. Fröhlich
    • 1
  • Y. Feng
    • 1
  • P. Ertl
    • 3
  • K. Mereiter
    • 4
  1. 1.Institute of Organic ChemistryTechnical University ViennaViennaAustria
  2. 2.Department of Organic ChemistrySlovak Technical UniversityBratislavaSlovakia
  3. 3.Institute of ChemistryComenius UniversityBratislavaSlovakia
  4. 4.Institute of Crystallography, Mineralogy and Structure ChemistryTechnical University ViennaViennaAustria

Personalised recommendations