Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 123, Issue 10, pp 883–889 | Cite as

Potentiometric studies on the complexation equilibria between some trivalent lanthanide metal ions and biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS)

  • Sahadev R. K. Sharma
  • S. K. Sindhwani
Anorganische Und Physikalische Chemie
  • 37 Downloads

Summary

The chelation behaviour of some trivalent lanthanide and yttrium metal ion with biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS) has been investigated by potentiomotric measurements at 20±0.5°C in 75% (v/v) dioxane-water medium at various ionic strengths of sodium perchlorate. The method of Bjerrum and Calvin, as modified by Irving and Rossotti has been used to find out the values of\(\bar n\) (average number of ligand bound per metal ion) andpL (free ligand exponent). The formation constants of metal chelates have been computed on a PC-XT computer, using a program patterned after that of Sullivan et al. to give β n values using weighted least squares method. TheS min values (S min 2) have been calculated. The order of formation constants of chelates was found to be: La3+<Ce3+<Pr3+<Nd3+<Sm3+<Eu3+<Gd3+<Y3+<Tb3+<Dy3+. The formation constants of the chelates formed have been correlated to size and ionization potentials of the metal ions.

Keywords

Lanthanide metal ion 2-Hydroxyl-1-naphthaldehyde thiosemicarbazone (HNATSFormation constant Potentiometry 

Potentiometrische Untersuchungen der Komplexierungsgleichgewichte zwischen einigen trivalenten Metallionen und biologisch aktivem 2-Hydroxy-1-naphthaldehyd-thiosemicarbazon (HNATS)

Zusammenfassung

Es wurde das Chelierungsverhalten einiger trivalenter Lanthanidenionen mit biologisch aktivem 2-Hydroxy-1-naphthaldehyd-thiosemicarbazon (HNATS) mittels potentiometrischer Messungen bei 20±0.5°C in 75% (v/v) Dioxan-Wasser bei verschiedener Ionenstärke an Natriumperchlorat untersucht. Die Methode nach Bjerrum und Calvin in der Modifikation nach Irving und Rossotti wurde zur Ermittlung der Werte\(\bar n\) (mittlere Anzahl an Liganden pro Metallion) undpL (Exponent an freiem Liganden) verwendet. Die Komplexbildungskonstanten wurden in Anlehnung an Sullivan et al. an einem PC-XT Computer errechnet. DieSmin-Werte (Smin2) wurden ebenfalls bestimmt. Die Reihung der Chelatbildungskonstanten war: La3+<Ce3+<Pr3+<Nd3+<Sm3+<Eu3+<Gd3+<Y3+<Tb3+<Dy3+. Die Bildungskonstanten sind mit der Größe und dem Ionisierungspotential der Metallionen zu korrelieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Singh S. K., Sharma R. K., Sindhwani S. K. (1984) Transition Met. Chem.9 (12): 473–6Google Scholar
  2. [2]
    Singh S. K., Sindhwani S. K. (1986) Analysis14 (5): 245–51Google Scholar
  3. [3]
    Singh S. K., Sharma R. K., Sindhwani S. K. (1986) Bull. Chem. Soc. Japan59 (4): 1223–27Google Scholar
  4. [4]
    Salinas F., Jimenez Sanchez J. C., Lozano Ruiz M. M. (1987) Bull. Soc. Chim. Belg.96 (1): 73–74Google Scholar
  5. [5]
    Barest P. A. (1965) Nature206: 1340Google Scholar
  6. [6]
    Doamaral J. R., Blanz E. J., French F. A. (1969) J. Med. Chem.12: 21Google Scholar
  7. [7]
    Bauer D. J., Vincent L. St., Kempe C. H., Downe A. W. (1963) LancetII: 494Google Scholar
  8. [8]
    Petering H. C., Buskirk H. H., Underwood G. E. (1964) Cancer Res.64: 367Google Scholar
  9. [9]
    Orlova N. N., Aksenova U. A., Selidovkin D. A., Bogadanova N. S., Pershin G. N. (1968) Russ. Pharm. Toxical. 348Google Scholar
  10. [10]
    West D. X., Carlson C. S., Whyte A. C. (1990) Transition Met. Chem.15: 43–47Google Scholar
  11. [11]
    Domagk G., Behnisch R., Mietzsch F., Schmidt H. (1946) Naturwissenschaften33: 315Google Scholar
  12. [12]
    Russay R. J., Stauffer Chemical Co., U. S. A., July 07, 1981, 4, 277, 500 Cl. 424–324; A01N37/18, Appl. March 24, 1980, 132, 957, pp. 3Google Scholar
  13. [13]
    Benjamin P., Chen LiPein (1964) J. Med. Chem.7 (3): 383–85Google Scholar
  14. [14]
    Taniyama, Hyozo, Tanaka Y., Yakagaku Kinkyu (1965)36 (10): 319–28Google Scholar
  15. [15]
    Sahadev, Sharma R. K., Sindhwani S. K. (1988) Indian J. Chem.27 A: 643–44Google Scholar
  16. [16]
    Sahadev, Sharma R. K., Sindhwani S. K. (1988) Thermochimica Acta126: 1–6Google Scholar
  17. [17]
    Schwarzenbach G. (1956) “Complexometric titrations”. Methuen, London, pp. 177Google Scholar
  18. [18]
    Sullivan J. C., Rydberg J., Miller W. F. (1959) Acta Chem. Scand.13: 2059Google Scholar
  19. [19]
    Rydberg J., Sullivan J. C. (1959) Acta Chem. Scand.13: 2023Google Scholar
  20. [20]
    Van Uitert L. G., Hass C. C. (1953) J. Am. Chem. Soc.75: 451Google Scholar
  21. [21]
    Rao U. B., Mathur H. B. (1969) Indian J. Chem.7: 1234Google Scholar
  22. [22]
    Nasanen R., Ekman A. (1952) Acta Chem. Scand.6: 1939Google Scholar
  23. [23]
    Martell A. E., Smith R. M. (1974) Critical Stability Constant, Vol. 1. Plenum, New YorkGoogle Scholar
  24. [24]
    Nair P. K. R., Srinivasulu K. (1979) J. Inorg. Nucl. Chem.41: 251Google Scholar
  25. [25]
    Bjerrum J. (1941) Metal Amine Formation in Aqueous Solutions. P. Hasse, CopenhagenGoogle Scholar
  26. [26]
    Stability Constants of Metal Ion Complexes, Part I. The Chemical Soc. Special Publication, London, pp. 2, 3, 5, 10, 13Google Scholar
  27. [27]
    Varshney A., Tandon J. P., Crowe A. J. (1986) Polyhedron, Vol. 5.3: 739–42Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Sahadev R. K. Sharma
    • 1
  • S. K. Sindhwani
    • 1
  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations