Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 119, Issue 10, pp 1103–1112 | Cite as

On the crystal chemistry of three copper(II)-arsenates: Cu3(AsO4)2-III, Na4Cu(AsO4)2, and KCu4(AsO4)3

  • Herta Effenberger
Anorganische Und Physikalische Chemie

Abstract

The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:

Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, α=70.61(2)°, β=86.52(2)°, γ=68.43(2)°,Z=1, space group\(P\bar 1\),R=0.035 for 1674 reflections with sin Θ/λ ⩽0.90 Å−1.

Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, α=98.51(2)°, β=90.76(2)°, γ=105.97(2)°,Z=1, space group\(P\bar 1\),R=0.028 for 2157 reflections with sin Θ/λ ⩽0.90 Å−1.

KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, β=118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin Θ/λ ⩽0.80 Å−1.

Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.

Abstract

Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:

Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, α = 70.61 (2)°, β = 86.52(2)°, γ = 68.43(2)°,Z = 1, Raumgruppe\(P\bar 1\),R = 0.035 für 1674 Reflexe mit sin Θ/λ ⩽ 0.90 Å−1.

Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, α = 98.51(2)°, β = 90.76(2)°, γ = 105.97(2)°,Z = 1, Raumgruppe\(P\bar 1\),R = 0.028 für 2157 Reflexe mit sin Θ/λ ⩽ 0.90 Å−1.

KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, β = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin Θ/λ ⩽ 0.80 Å−1.

Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.

Keywords

Cu3(AsO4)2-III Na4Cu(AsO4)2 KCu4(AsO4)3 Hydrothermal synthesis Crystal structure Crystal chemistry 

Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shannon RD, Calvo C (1973) Acta Cryst B29: 1338Google Scholar
  2. [2]
    Effenberger H (1988) J Solid State Chem 73: 118Google Scholar
  3. [3]
    Hathaway BJ (1984) Struct Bonding 57: 55Google Scholar
  4. [4]
    Krezhov K, Petrov K, Karamaneva T (1983) J Solid State Chem 48: 33Google Scholar
  5. [5]
    Lenglet M, Lopitaux J, Arsene J (1983) J Solid State Chem 50: 294Google Scholar
  6. [6]
    Malinovskii YuA (1984) Sov Phys Dokl 29: 706Google Scholar
  7. [7]
    Shoemaker GL, Anderson JB, Kostiner E (1977) Acta Cryst B33: 2969Google Scholar
  8. [8]
    Hawthorne FC (1986) Am Miner 71: 206Google Scholar
  9. [9]
    Poulsen SJ, Calvo C (1968) Canad J Chem 46: 917Google Scholar
  10. [10]
    Kolsi AW (1977) C R Acad Sci Paris Ser C 284: 483Google Scholar
  11. [11]
    Pertlik F (1987) Acta Cryst C43: 381Google Scholar
  12. [12]
    Effenberger H (1987) Z Krist 180: 43Google Scholar
  13. [13]
    Effenberger H (1987) Acta Cryst C43: 399Google Scholar
  14. [14]
    Effenberger H (1988) Z Krist (in press)Google Scholar
  15. [15]
    International tables for X-ray crystallography (1974), vol 4. The Kynoch Press, BirminghamGoogle Scholar
  16. [16]
    Stoe ⇐p; Cie (1984) STRUCSY—structure system program package. Stoe, DarmstadtGoogle Scholar
  17. [17]
    Zachariasen WH (1967) Acta Cryst 23: 558Google Scholar
  18. [18]
    Zemann J (1961) Fortschr Miner 39: 59Google Scholar
  19. [19]
    Zemann J (1972) Handbook of geochemistry, vol 2, part 3. Springer, Berlin Heidelberg New York, 29/AGoogle Scholar
  20. [20]
    Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, OxfordGoogle Scholar
  21. [21]
    Eysel W, Breuer K-H, Lambert U (1984) Acta Cryst A40 [Suppl]: C-209Google Scholar
  22. [22]
    Jasper-Tönnies B, Müller-Buschbaum H (1984) Z Anorg Chem 517: 161Google Scholar
  23. [23]
    Keller P, Hess H, Dunn PJ (1979) Tschermaks Miner Petrogr Mitt 26: 167Google Scholar
  24. [24]
    Quarton M, Kolsi AW (1983) Acta Crystallogr C39: 664Google Scholar
  25. [25]
    Effenberger H (1984) Z Kristallogr 168: 113Google Scholar
  26. [26]
    Embrey PG, Fejer EE, Clark AM (1977) Miner Rec 8: 87Google Scholar
  27. [27]
    Keller P, Hess H, Dunn PJ (1982) Tschermaks Miner Petrogr Mitt 29: 169Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Herta Effenberger
    • 1
  1. 1.Institut für Mineralogie und KristallographieUniversität WienWienAustria

Personalised recommendations