Journal of Materials Science

, Volume 17, Issue 1, pp 225–234 | Cite as

Transformation toughening

Part 1 Size effects associated with the thermodynamics of constrained transformations
  • F. F. Lange


The thermodynamics of the constrained phase transformation is presented with particular reference to size effects introduced by surface phenomena concurrent with the transformation, e.g., the formation of solid-solid surfaces (twins, etc.) and solid-vapour surfaces (microcracks). It is shown that these surface phenomena not only introduce a size-dependent energy term into the total free-energy change, but also reduce the strain energy associated with the transformation, which can result in a transformation at a temperature where ¦ΔGc¦, the chemical free energy change, is less thanUse, the unrelieved strain energy associated with the constrained transformation. The results of this analysis lead to a phase diagram representation that includes the size of the transforming inclusion. This diagram can be used to define the critical inclusion size required to prevent the transformation and/or to obtain the transformation, but avoid one or more of the concurrent surface phenomena.


Polymer Free Energy Phase Diagram Phase Transformation Energy Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Garvie, R. H. Hannick andR. T. Pascoe,Nature 258 (1975) 703.Google Scholar
  2. 2.
    R. C. Garvie andR. T. Pascoe, in “Processing of Crystalline Ceramics” edited by H. Palmour III, R. F. Davis and T. M. Hare (Plenum Press, New York, 1978) p. 263.Google Scholar
  3. 3.
    D. L. Porter andA. H. Heuer,J. Amer. Ceram. Soc. 60 (1977) 183.Google Scholar
  4. 4.
    Idem, ibid. 6 (1977) 280.Google Scholar
  5. 5.
    T. K. Gupta, J. H. Bechtold, R. C. Kuznichi, L. H. Adoff andB. R. Rossing,J. Mater. Sci. 12 (1977) 2421.Google Scholar
  6. 6.
    T. K. Gupta, F. F. Lange andJ. H. Bechtold,J. Mater. Sci. 13 (1978) 1464.Google Scholar
  7. 7.
    E. C. Sabbarao, H. S. Maiti andK. K. Srivastava,Phys. Stat. Sol. 21 (1974) 9.Google Scholar
  8. 8.
    A. Heuer andG. L. Nord, Jr, in “Electron Microscopy in Minerology” edited by H. R. Weuk (Springer-Verlag, Berlin, Heidelberg and New York, 1976) p. 274.Google Scholar
  9. 9.
    J. E. Bailey,Proc. Roy. Soc. 279A (1964) 395.Google Scholar
  10. 10.
    G. K. Bansal andA. H. Heuer,Acta Met. 22 (1974) 409.Google Scholar
  11. 11.
    S. T. Buljan, H. A. McKinstry andV. S. Stubican,J. Amer. Ceram. Soc. 59 (1976) 351.Google Scholar
  12. 12.
    R. N. Patil andE. C. Subbarao,J. Appl. Cryst. 2 (1969) 281.Google Scholar
  13. 13.
    K. K. Srivastava, R. N. Patil, C. B. Chandary, K. V. G. K. Gokhale andE. C. Subbarao,Trans. Brit. Ceram. Soc. 73 (1974) 85.Google Scholar
  14. 14.
    H. C. Scott,J. Mater. Sci. 10 (1975) 1527.Google Scholar
  15. 15.
    V. S. Stubican, R. C. Hink andS. P. Ray,J. Amer. Ceram. Soc. 61 (1978) 17.Google Scholar
  16. 16.
    J. D. Eshelby, in “Progress in Solid Mechanics” Vol. 2, edited by I. N. Sneddon and R. Hill (North-Holland Publishers, Amsterdam, 1961) p. 89.Google Scholar
  17. 17.
    R. C. Garvie,J. Phys. Chem. 69 (1965) 1238.Google Scholar
  18. 18.
    Idem, ibid. 82 (1978) 218.Google Scholar
  19. 19.
    F. F. Lange, in “Fracture Mechanics of Ceramics” edited by R. C. Brandt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1974) p. 599.Google Scholar
  20. 20.
    Idem, in “Fracture Mechanics of Ceramics” Vol. 4, edited by R. C. Brandt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 799.Google Scholar
  21. 21.
    Y. M. Ito, M. Rosenblatt, L. Y. Cheng, F. F. Lange andA. G. Evans,Inter. J. Fracture, to be published.Google Scholar
  22. 22.
    Y. M. Ito andF. F. Lange, unpublished work.Google Scholar
  23. 23.
    D. L. Porter, PhD thesis, Case-Western University (1977) (University Microfilms Int. Order No. 77-25185, p. 190).Google Scholar
  24. 24.
    Y. Matsuo andH. Sasaki,J. Amer. Ceram. Soc. 49 (1966) 229.Google Scholar
  25. 25.
    W. R. Buessem, L. E. Cross andA. K. Goswanii,J. Amer. Ceram. Soc. 49 (1966) 33.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • F. F. Lange
    • 1
  1. 1.Structural Ceramics GroupRockwell International Science CenterThousand OaksUSA

Personalised recommendations