Monatshefte für Chemie / Chemical Monthly

, Volume 124, Issue 1, pp 37–53

Convergent synthesis of 2′,3′-dideoxy-3′-methylthio and 2′,3′-dideoxy-3′-mercapto nucleosides and their disulfide analogues — Potential anti-HIV agents

  • Kim L. Dueholm
  • Youssef L. Aly
  • Per T. Jørgensen
  • Ahmed A. El-Barbary
  • Erik B. Pedersen
  • Claus Nielsen
Organische Chemie Und Bicchemie

Summary

The iodide4(α) or7 synthesized in three steps from 2-deoxy-D-ribose1, has been subjected to a number of nucleophilic substitution reactions producing the 3-benzoylthio-, 3-methylthio- and the 3-thiocyanato-2,3-dideoxy-D-erythro-pentofuranosides8,13 and15, respectively, in addition to the disulfide17 of their 3-mercapto analogue. Subjecting the thiobenzoate8 to the Friedel-Crafts catalyzed silyl Hilbert Johnson reaction in conjunction with the silylated nucleobases of uracil, thymine and N4-isobutyrylcytosine9a–c resulted in the isolation of the 2′,3′-dideoxy-3′-mercapto nucleosides11 and their disulfides12 subsequent to deprotection. The 2,3-dideoxy-3-methylthio-pentofuranoside13 afforded both anomers of the 2′,3′-dideoxy-3′-methylthio nucleosides19 and20 under similar conditions. The first known example of a coupling directly on a 2,3-didehydro-2,3-dideoxyfuranose is presented. 2′,3′-Dideoxy-3′-mercaptocytidine showed protection against HIV-1 in MT-4 cells with ED50=20 µM.

Keywords

Nucleosides, 2′,3′-dideoxy-3′-mercapto Nucleosides, 2′,3′-dideoxy-3′-methylthio Nucleosides 2′,3′-didehydro-2′,3′-dideoxy Disulfide, bis(2′,3′-dideoxy-nucleosid-3′-yl) 

Konvergente Synthese von 2′,3′-Didesoxy-3′-methylthio und 2′,3′-Didesoxy-3′-mercapto-Nucleosiden und ihren Disulfid-Analogen — Potentielle Anti-HIV — Agentien

Zusammenfassung

Die in drei Stufen aus 2-Desoxy-D-ribose hergestellten Jodide4(α) bzw. 7 wurden einer Reihe von nucleophilen Substitutionsreaktionen unterzogen, wobei die 3-Benzoylthio-, 3-Methylthio-und 3-Thiocyanato-2,3-didesoxy-D-erythro-pentofuranoside8,13 und15 zusätzlich zum Disulfid17 ihrer 3-Mercapto-Analogen entstanden. Bei der Friedel-Crafts-katalysierten Silyl-Hilbert-Johnson Reaktion des Thiobenzoats8 in Verbindung mit den silylierten Nucleobasen Uracil, Thymin und N4-Isobutyrylcytosin9a–c entstanden nach der Schutzgruppenentfernung die 2′,3′-Didesoxy-3′-mercapto-Nucleoside11 und ihre Disulfide12. Unter ähnlichen Bedingungen ergaben die 2′,3′-Didesoxy-3′-methylthiopentofuranoside13 beide Anomere der 2′,3′-Didesoxy-3′-methylthionucleoside19 und20. Es wird das erste Beispiel einer direkten Kopplung 2,3-Didehydro-2,3-didesoxyfuranose vorgestellt. 2′,3′-Didesoxy-3′-mercaptocytidin zeigte Schutzwirkung gegenüber HIV-1 in MT-4 Zellen mit ED50=20 µM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C., Rozenbaum W., Montagnier L. (1983) Science220: 868Google Scholar
  2. [2]
    Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J., Safai B., White G., Foster P., Markham P. D. (1984) Science224: 500Google Scholar
  3. [3]
    Mitsuya H., Weinhold K. J., Furman P. A., St. Clair M. H., Lehrman S. N., Gallo R. C., Bolognesi D., Barry D. W., Broder S. (1985) Proc. Natl. Acad. Sci. USA82: 7096Google Scholar
  4. [4]
    Mitsuya H., Broder S. (1987) Nature325: 773Google Scholar
  5. [5]
    Ono K., Ogasawara M., Iwata Y., Nakane H., Fujii T., Sawai K., Saneyoshi M. (1986) Biochem. Biophys. Res. Commun.140: 498Google Scholar
  6. [6]
    De Clercq E. (1990) TiPS11: 198 and references cited thereinGoogle Scholar
  7. [7]
    Hansch C., Leo A. (1979) Ch. VI Cluster Analysis and the Design of Congener Sets, Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley USA, p. 49Google Scholar
  8. [8]
    Fischer E. (1893) Ber. Dtsch. Chem. Ges.26: 2400Google Scholar
  9. [9]
    Fischer E. (1895) Ber. Dtsch. Chem. Ges.28: 1145Google Scholar
  10. [10]
    Hoffer M. (1960) Chem. Ber.93: 2777Google Scholar
  11. [11]
    Fox J. J., Yung N. C., Wempen I., Hoffer M. (1961) J. Am. Chem. Soc.83: 4066Google Scholar
  12. [12]
    Deriaz R. E., Overend W. G., Stacey M., Wiggins L. F. (1949) J. Chem. Soc.: 2836Google Scholar
  13. [13]
    Motawia M. S., Pedersen E. B. (1990) Liebigs Ann. Chem.: 599Google Scholar
  14. [14]
    Fleet G. W. J., Son J. C., Derome A. E. (1988) Tetrahedron44: 625Google Scholar
  15. [15]
    Hansen P., Pedersen E. B. (1990) Acta Chem. Scand.44: 522Google Scholar
  16. [16]
    Kunz H., Schmidt P. (1979) Tetrahedron Lett.23: 2123Google Scholar
  17. [17]
    Kunz H., Schmidt P. (1979) Chem. Ber.112: 3886Google Scholar
  18. [18]
    Cosstick R., Vyle J. S. (1990) Nucleic Acids Res.18: 829Google Scholar
  19. [19]
    Wittenburg E. (1964) Z. Chem.4: 303Google Scholar
  20. [20]
    Vorbrüggen H., Krolikiewicz K., Bennua B. (1981) Chem. Ber.114: 1234Google Scholar
  21. [21]
    Sigiura Y., Furuya S., Furukawa Y. (1988) Chem. Pharm. Bull.36: 3253Google Scholar
  22. [22]
    Niedballa U., Vorbrüggen H. (1974) J. Org. Chem.39: 3654Google Scholar
  23. [23]
    Herdewijn P., Balzarini J., Baba M., Pauwels R., Van Aerschot A., Janssen G., De Clercq E. (1988) J. Med. Chem.31: 2040Google Scholar
  24. [24]
    Lin T.-S., Guo J.-Y., Schinazi R. F., Chu C. K., Xiang J.-N., Prusoff W. H. (1988) J. Med. Chem.31: 336Google Scholar
  25. [25]
    Chorbadjiev S., Roumian C., Markov P. (1977) J. Prakt. Chem.319: 1036Google Scholar
  26. [26]
    Mitsunobu O. (1981) Synthesis: 1Google Scholar
  27. [27]
    Nagamachi T., Fourrey J.-L., Torrence P. F., Waters J. A., Witkop B. (1974) J. Med. Chem.17: 403Google Scholar
  28. [28]
    Cleland W. W. (1964) Biochemistry3: 480Google Scholar
  29. [29]
    Dueholm K. L., Motawia M. S., Pedersen E. B., Nielsen C. M., Lundt I. (1992) Arch. Pharm. (Weinheim)325: 597Google Scholar
  30. [30]
    Okabe M., Sun R.-C., Tam S. Y.-K., Todaro L. J., Coffen D. L. (1988) J. Org. Chem.53: 4780Google Scholar
  31. [31]
    Mansuri M. M., Wos J. A., Martin J. C. (1989) Nucleosides Nucleotides8: 1463Google Scholar
  32. [32]
    Miller N., Fox J. J. (1964) J. Org. Chem.29: 1772Google Scholar
  33. [33]
    Hildesheim J., Cléophax J., Géro S. D. (1967) Tetrahedron Lett.18: 1685Google Scholar
  34. [34]
    Köll P., Deyhim S. (1978) Chem. Ber.111: 2913Google Scholar
  35. [35]
    Chu C. K., Babu J. R., Beach J. W., Ahn S. K., Huang H., Jeong L. S., Lee S. J. (1990) J. Org. Chem.55: 1418Google Scholar
  36. [36]
    Abdel-Megied A. E.-S., Pedersen E. B., Nielsen C. M. (1991) Synthesis: 313Google Scholar
  37. [37]
    Vorbrüggen H., Höfle G. (1981) Chem. Ber.114: 1256Google Scholar
  38. [38]
    Horwitz J. P., Chua J., Noel M., Donatti J. T. (1967) J. Org. Chem.32: 817Google Scholar
  39. [39]
    Greengrass C. W., Hoople D. W. T., Street S. D. A., Hamilton F., Marriott M. S., Bordner J., Dalgleish A. G., Mitsuya H., Broder S. (1989) J. Med. Chem.32: 618 and references cited thereinGoogle Scholar
  40. [40]
    Nielsen C. M., Bygbjerg I. C., Vestergaard B. F. (1987) Lancet I: 566Google Scholar
  41. [41]
    Yuzhakov A. A., Chidzhavadze Z. G., Bibilashvilli R. Sh., Kraevskii A. A., Galegov G. A., Korneeva M. N., Nosik D. N., Kilesso T. Yu. (1991) Biorg. Khim.17: 504; (1991) Chem. Abstr.115: 84923gGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Kim L. Dueholm
    • 1
  • Youssef L. Aly
    • 1
  • Per T. Jørgensen
    • 1
  • Ahmed A. El-Barbary
    • 1
  • Erik B. Pedersen
    • 1
  • Claus Nielsen
    • 2
  1. 1.Department of ChemistryOdense UniversityOdense MDenmark
  2. 2.Retrovirus Laboratory, Department of VirologyStatens SeruminstitutCopenhagenDenmark

Personalised recommendations