European Journal of Nuclear Medicine

, Volume 22, Issue 9, pp 1043–1063 | Cite as

Multimodality imaging of osteomyelitis

  • Abdelhamid H. Elgazzar
  • Hussein M. Abdel-Dayem
  • James D. Clark
  • Harry R. MaxonIII
Review article


Early diagnosis of osteomyelitis continues to be a clinical problem. Multiple imaging modalities are being used for the diagnosis of osteomyelitis, but none of them is ideal for all cases. The choice of modality depends on several factors based on an understanding of the pathophysiologic aspects of different forms of osteomyelitis. After a brief introduction outlining some basic principles regarding the diagnosis of osteomyelitis, pathophysiologic aspects are reviewed. Advantages and disadvantages of each imaging modality and their applications in different forms of osteomyelitis are discussed. The use of different imaging modalities in the diagnosis of special forms of osteomyelitis, including chronic, diabetic foot, and vertebral osteomyelitis, and osteomyelitis associated with orthopedic appliances and sickle cell disease is reviewed. Taking into account the site of suspected osteomyelitis and the presence or absence of underlying pathologic changes and their nature, an algorithm summarizing the use of various imaging modalities in the diagnosis of osteomyelitis is presented.

Key words

Diagnosis of osteomyelitis Osteomyelitis radiologic diagnosis Imaging of infection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nixon GW Hematogenous osteomyelitis of metaphyseal equivalent locations.AJR 1978; 130: 123–129.Google Scholar
  2. 2.
    Waldvogel FA, Medoff G, Swartz MN. Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects (part 1).N Engl J med 1970; 282: 198–206.Google Scholar
  3. 3.
    Gold R. Diagnosis of osteomyelitis.Pediatr Rev 1991; 12: 292–297.Google Scholar
  4. 4.
    Cole WG, Dalziel RE, Leitl S. Treatment of acute osteomyelitis in childhood.J Bone Joint Surg [Br] 1982; 64: 208–213.Google Scholar
  5. 5.
    Harris NH. Some problems in the diagnosis and treatment of acute osteomyelitis.J Bone Joint Surg [Br] 1960; 42: 535–541.Google Scholar
  6. 6.
    Seabold JE, Nepola JV, Marsh JL, et al. Post operative bone marrow alterations: potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy.Radiology 1991; 180: 741–747.Google Scholar
  7. 7.
    Trueta J. The normal vascular anatomy of the human femoral head during growth.J Bone Joint Surg [Br] 1957; 39: 358–394.Google Scholar
  8. 8.
    Trueta J. The three types of acute hematogenous osteomyelitis: a clinical and vascular study.J Bone Joint Surg [Br] 1959; 41:671–680.Google Scholar
  9. 9.
    Bonakdar-pour A, Gaines VD. The radiology of osteomyelitis.Orthop Clin North Am 1983; 14: 21–37.Google Scholar
  10. 10.
    Kasser JR. Hematogenous osteomyelitis: untangling the diagnostic confusion.Postgrad Med 1984; 76: 79–86.Google Scholar
  11. 11.
    Nixon GW. Acute hematogenous osteomyelitis.Pediatr Ann 1976;5:64–81.Google Scholar
  12. 12.
    Kahn DS, Pritzker KPH. The pathophysiology of bone infection.Clin Orthop 1973; 96: 12.Google Scholar
  13. 13.
    Handmaker H, Leonards R. The bone scan in inflammatory osseous disease.Semin Nucl Med 1976; 6: 95–105.Google Scholar
  14. 14.
    Alazraki N, Dries D, Datz F, et al. Value of a 24 hour image (four phase bone scan) in assessing osteomyelitis in patients with peripheral vascular disease.J Nucl Med 1985; 26: 711–717.Google Scholar
  15. 15.
    Israel O, Gips S, Jerushalmi J, et al. Osteomyelitis and soft tissue infection: differential diagnosis with 24 hour/4 hour ratio of Tc 99m MDP uptake.Radiology 1987; 163: 725–726.Google Scholar
  16. 16.
    Sundberg SB, Savage JP, Foster BK. Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood.J Pediatric Orthop 1989; 9: 579–585.Google Scholar
  17. 17.
    Gilday DL, Paul DJ, Paterson J. Diagnosis of osteomyelitis in children by combined blood pool and bone imaging.Radiology 1975; 117: 331–335.Google Scholar
  18. 18.
    Tuson GE, Hoffman EB, Mann MD. Isotope bone scanning for acute osteomyelitis and septic arthritis in children.J Bone Joint Surg [Br] 1994; 76B: 306–310.Google Scholar
  19. 19.
    Handmaker H, Giammona ST. Improved early diagnosis of acute inflammatory skeletal- articular diseases in children: a two radiopharmaceutical approach.Pediatrics 1984; 73: 661–669.Google Scholar
  20. 20.
    Bihl H, Rossler B, Borr U. Assessment of infectious conditions in the musculoskeletal system: experience with Tc-99m HIG in 120 patients.J Nucl Med 1992; 33: 839.Google Scholar
  21. 21.
    Howie DW, Savage JP, Wilson TG, et al. The technetium phosphate bone scan in the diagnosis of osteomyelitis in childhood.J Bone Joint Surg [Am] 1983; 65: 431–437.Google Scholar
  22. 22.
    Kolyvas E, Rosenthall L, Ahronheim GA, et al. Serial Ga-67 citrate imaging during treatment of acute osteomyelitis in childhood.Clin Nucl Med 1978; 3: 461–466.Google Scholar
  23. 23.
    Lisbona R, Rosenthall L. Observations on sequential use of Tc-99m phosphate complex and Ga-67 imaging in osteomyelitis, cellulitis and septic arthritis.Radiology 1977; 123: 123–129.Google Scholar
  24. 24.
    Majd M, Frankel RS. Radionuclide imaging in skeletal inflammatory and ischemic disease in children.AJR 1976; 126: 832–841.Google Scholar
  25. 25.
    Maurer AH, Chen DC, Camargo EE, et al. Utility of three phase skeletal scintigraphy in suspected osteomyelitis: concise communications.J Nucl Med 1981; 22: 941–949.Google Scholar
  26. 26.
    Schauwecker DS. The scintigraphic diagnosis of osteomyelitis.AJR 1992; 158: 9–18.Google Scholar
  27. 27.
    Sfakianakis GN, Scoles P, Welch M, et al. Evolution of the bone imaging findings in osteomyelitis.J Nucl Med 1978; 19: 706.Google Scholar
  28. 28.
    Demopulos GA, Black EE, McDougall R. Role of radionuclide imaging in the diagnosis of acute osteomyelitis.J Pediatr Orthop 1988; 8: 558–565.Google Scholar
  29. 29.
    Fleisher R, et al. Falsely normal radionuclide scans for osteomyelitis.Am J Dis Child 1980; 134: 499–502.Google Scholar
  30. 30.
    Mason MD, Zlatkin MB, Esterhai JL, et al. Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging.Radiology 1989; 173: 355–359.Google Scholar
  31. 31.
    Rinsky L, Goris ML, Schurman DJ, et al. Technetium bone scanning in experimental osteomyelitis.Clin Orthop 1977; 128:361–366.Google Scholar
  32. 32.
    Sullivan DC, Rosenfield NS, Ogden J, et al. Problems in the scintigraphic detection of osteomyelitis in children.Radiology 1980;135:731–736.Google Scholar
  33. 33.
    Wald ER, Mirror R, Gartner JC. Pitfalls in the diagnosis of acute osteomyelitis by bone scan.Clin Pediatr 1980; 19: 597–600.Google Scholar
  34. 34.
    Al-Sheikh W, Sfakianakis GN, Mnaymneh W, et al. Subacute and chronic bone infections: diagnosis using In-111, Ga67 and Tc-99m MDP bone scintigraphy and radiography.Radiology 1985;155:501–506.Google Scholar
  35. 35.
    Hadjipavlou A, Lisbona R, Rosenthall L. Difficulty of diagnosing infected hypertrophic pseudoarthrosis by radionuclide imaging.Clin Nucl Med 1983; 8: 45–49.Google Scholar
  36. 36.
    Ivanovic V, Dodig D, Livakovic M, et al. Comparison of three phase bone scan, three phase Tc-99m HMPAO leukocyte scan and gallium-67 scan in chronic bone infection.Prog Clin Biol Res 1990; 355: 189–198.Google Scholar
  37. 37.
    Keenan AM, Tindel NL, Alavi A. Diagnosis of pedal osteomyelitis in diabetic patients using current scintigraphic techniques.Arch Intern Med 1989; 149: 2262–2266.Google Scholar
  38. 38.
    Larcos G, Brown ML, Sutton RT. Diagnosis of osteomyelitis of the foot in diabetic patients: value of In-111 leukocyte scintigraphy.AJR 1991; 157: 527–531.Google Scholar
  39. 39.
    Lewin JS, Rosenfield NS, Hoffer PB, et al. Acute osteomyelitis in children: combined Tc-99m and Ga-67 imaging.Radiology 1986; 158: 795–804.Google Scholar
  40. 40.
    Magnuson JE, Brown ML, Mauser MF, et al. In-111 labeled leukocyte scintigraphy in suspected orthopedic prosthesis infection: comparison with other modalities.Radiology 1988; 168:235–239.Google Scholar
  41. 41.
    Maurer AH, Millmond SH, Knight LC, et al. Infection in diabetic osteoarthropathy: use of indium-labeled leukocytes for diagnosis.Radiology 1986; 161: 221–225.Google Scholar
  42. 42.
    Modic MT, Pflanze W, Feiglin DH, et al. Magnetic resonance imaging of musculoskeletal infections.Radiol Clin North Am 1986; 24:247–258.Google Scholar
  43. 43.
    Newman LG, Waller J, Palestro CJ, et al. Unsuspected osteomyelitis in diabetic foot ulcers: diagnosis and monitoring by leukocyte scanning with In-111 oxyquinoline.JAMA 1991; 266:1246–1251.Google Scholar
  44. 44.
    Park HM, Wheat LJ, Siddiqui AR, et al. Scintigraphic evaluation of diabetic osteomyelitis: concise communication.J Nucl Med 1982; 23: 569–573.Google Scholar
  45. 45.
    Ruther W, Hotze A, Moller F, et al. Diagnosis of bone and joint infection by leukocyte scintigraphy: a comparative study with Tc-99m HMPAO labeled leukocytes, Tc-99m labeled an tigranulocyte antibodies and Tc-99m labeled nanocolloid.Arch Orthop Trauma Surg 1990; 110: 26–32.Google Scholar
  46. 46.
    Schauwecker DS, Park HM, Mock BH, et al. Evaluation of complicating osteomyelitis with Tc-99m MDP, In-111 granulocytes and Ga67 citrate.J Nucl Med 1984; 25: 849–853.Google Scholar
  47. 47.
    Splittgerber GF, Spiegelhoff DR, Buggy BP. Combined leukocyte and bone imaging used to evaluate diabetic osteoarthropathy and osteomyelitis.Clin Nucl Med 1989; 14: 156–160.Google Scholar
  48. 48.
    Sugarman B. Pressure sores and underlying bone infection.Arch Intern Med 1987; 147: 553–555.Google Scholar
  49. 49.
    Unger E, Moldofsky P, Gatenby R, et al. Diagnosis of osteomyelitis by MR imaging.AJR 1988; 150: 605–610.Google Scholar
  50. 50.
    Seldin DW, Heiken JP, Feldman F, et al. Effect of soft tissue pathology on detection of pedal osteomyelitis in diabetics.J Nucl Med 1985; 26: 988–993.Google Scholar
  51. 51.
    Scoles PV, Hilty MD, Sfakianakis GN. Bone scan patterns in acute osteomyelitis.Clin Orthop 1980; 153: 210–217.Google Scholar
  52. 52.
    Namey TC, Halla JT. Radiographic and nucleographic techniques.Clin Rheum Dis 1978; 4: 95–132.Google Scholar
  53. 53.
    Deysine M, Rafkin H, Teicher I, et al. The detection of acute experimental osteomyelitis with gallium-67 citrate scanning.Surg Gynecol Obstet 1975; 141: 40–42.Google Scholar
  54. 54.
    Rosenthall L, Kloiber R, Damtew B, et al. Sequential use of radiophosphate and radiogallium imaging in the differential diagnosis of bone, joint and soft tissue infection: quantitative analysis.Diagn Imag 1982; 51: 249–258.Google Scholar
  55. 55.
    Borman TR, Johnson RA, Sherman FC. Gallium scintigraphy for the diagnosis of septic arthritis and osteomyelitis in children.J Pediatr Orthop 1986; 6: 317–325.Google Scholar
  56. 56.
    Esterhai J, Alavi A, Mandell GA, et al. Sequential technetium 99m/gallium-67 scintigraphic evaluation of subclinical osteomyelitis complicating fracture nonunion.J Orthop Res 1985; 3: 219–225.Google Scholar
  57. 57.
    Merkel KD, Brown ML, Fitzgerald RH Jr. Sequential technetium-99m HMDP gallium-67 citrate imaging for the evaluation of infection in the painful prosthesis.J Nucl Med 1986; 17:1413–1417.Google Scholar
  58. 58.
    Merkel KD, Brown ML, Dewanjee MK, et al. Comparison of indium-labeled-leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low grade musculoskeletal sepsis.J Bone Joint Surg 1985 [AM]; 67: 465–476.Google Scholar
  59. 59.
    Seabold JE, Nepola JV, Conrad GR, et al. Detection of osteomyelitis at fracture nonunion sites: comparison of two scintigraphic methods.AJR 1989; 152: 1021–1027.Google Scholar
  60. 60.
    Shafer RB, Marlette JM, Browne GA, et al. The role of Tc99m phosphate complexes and gallium-67 in the diagnosis and management of maxillofacial disease: concise communication.J Nucl Med 1981; 22: 8–11.Google Scholar
  61. 61.
    Tumeh SS, Aliabadi P, Weissman BN, et al. Chronic osteomyelitis: bone and gallium scan patterns associated with active disease.Radiology 1986; 158: 685–688.Google Scholar
  62. 62.
    Knight D, Gary HW, Bessent RG. Imaging for infection: caution required with the Charcot joint.Eur J Nucl Med 1988; 13: 523–526.Google Scholar
  63. 63.
    Modic M, Feiglin DH, Piraino DW et al. Vertebral osteomyelitis: assessment using MR.Radiology 1985; 157: 157–166.Google Scholar
  64. 64.
    Erdman WA, Tamburro F, Jayson HT, et al. Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging.Radiology 1991; 180: 533–539.Google Scholar
  65. 65.
    McCarthy K, Velchik MG, Alavi A, et al. Indium-111-labeled white blood cells in the detection of osteomyelitis complicated by a pre-existing condition.J Nucl Med 1988; 29: 1015–1021.Google Scholar
  66. 66.
    Mulamba, L, Ferrant A, Leners N, et al. Indium-111 leukocyte scanning in the evaluation of painful hip arthroplasty.Acta Orthop Scand 1983; 54: 695–697.Google Scholar
  67. 67.
    Ouzounian TJ, Thompson L, Grogan TJ, et al. Evaluation of musculoskeletal sepsis with indium-111 white blood cell imaging.Clin Orthop 1987; 221: 304–311.Google Scholar
  68. 68.
    Schauwecker DS, Burt RW, Park HM, et al. Comparison of purified indium-111 granulocytes and indium-111 mixed leukocytes for imaging of infections.J Nucl Med 1988; 29: 2325.Google Scholar
  69. 69.
    Schauwecker DS, Park HM, Burt RW, et al. Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease.J Nucl Med 1988; 29: 1651–1655.Google Scholar
  70. 70.
    Wukich DK, Callaghan JJ, Nostrand D, et al. Diagnosis of infection by preoperative scintigraphy with indium-labeled white blood cells.J Bone Joint Surg [Am] 1987; 69: 1353–1360.Google Scholar
  71. 71.
    Lewis VL, Bailey MH, Pulawski G, et al. The diagnosis of osteomyelitis in patients with pressure sores.Plast Reconstr Surg 1988; 81: 229–232.Google Scholar
  72. 72.
    Seabold JE, Ferlic RJ, Marsh JL, et al. Periarticular bone sites associated with traumatic injury: false-positive findings with In-111 labeled white blood cells and Tc-99m MDP scintigraphy.Radiology 1993; 186: 845–849.Google Scholar
  73. 73.
    Schauwecker DS. Osteomyelitis: diagnosis with indium-111 labeled leukocytes.Radiology 1989; 171: 141–146.Google Scholar
  74. 74.
    Ezuddin S, Yuille D, Spiegelhoff D. The role of dual bone and WBC scan imaging in the evaluation of osteomyelitis and cellulitis using both planar and SPELT imaging.J Nucl Med 1992;33:839.Google Scholar
  75. 75.
    Roddie ME, Peters AM, Danpure HJ, et al. Inflammation: imaging with Tc-99m-HMPAO-labeled leukocytes.Radiology 1988;166:767–772.Google Scholar
  76. 76.
    Verlooy H, Mortelmans L, Verbruggen A, et al. Tc-99m HMPAO labeled leukocyte scanning for detection of infection in orthopedic surgery.Prog Clin Biol Res 1990; 355: 181–187.Google Scholar
  77. 77.
    Vorne M, Lantto S, Paakkinen, et al. Clinical comparison of Tc-99mTc-HMPAO labeled leukocytes and Tc-99m nanocolloid in the detection of inflammation.Acta Radiol 1989; 30: 633–637.Google Scholar
  78. 78.
    Vorne M, Soini I, Lantto T, et al. Technetium-99m-HMPAO-labeled leukocytes in detection of inflammatory lesions: comparison with gallium-67 citrate.J Nucl Med 1989; 30: 633–637.Google Scholar
  79. 79.
    Abramovici J, Rubinstein M. Tc-99m nanocolloids: an alternative approach to diagnosis of inflammatory lesions of bones and joints [abstract].Eur J Nucl Med 1988; 24: 244.Google Scholar
  80. 80.
    Filvik G, Sloth M, Rydholm U, et al. Technetium-99m nanocolloid scintigraphy in orthopedic infections: a comparison with indium-111-labeled leukocytes.J Nucl Med 1993; 34: 1646–1650.Google Scholar
  81. 81.
    Streule K, de Schrijver M, Fridrich R. Tc99 labeled HSA-nanocolloid versus 111-In oxine-labeled granulocytes in detecting skeletal septic process.Nucl Med Commun 1988; 9: 59–67.Google Scholar
  82. 82.
    Rubin RH, Fischman AJ, Callahan JR, et al. Indium-111 labeled non-specific immunoglobulin scanning in the detection of focal infection.N Engl J Med 1989; 321: 935–940.Google Scholar
  83. 83.
    Rubin RH, Fischman AJ, Needleman M, et al. Radiolabeled, non-specific polyclonal human immunoglobulin in the detection of focal inflammation by scintigraphy: comparison with gallium-67 citrate and technetium-99m-labeled albumin.J Nucl Med 1989; 30: 385–389.Google Scholar
  84. 84.
    Buscombe JR, Lui D, Ensing G, et al. Tc-99m-human immunoglobulin (HIG): first results of a new agent for the localization of infection and inflammation.Eur J Nucl Med 1990; 16: 649–655.Google Scholar
  85. 85.
    Dominguez-Gadea L, Martin-Curto LM, Diez L, et al. Scintigraphic findings in Tc-99m antigranulocyte monoclonal antibody imaging of vertebral osteomyelitis [abstract].Eur J Nucl Med 1993; 20: 940.Google Scholar
  86. 86.
    Fischman AJ, Rubin RH, Khaw BA, et al. Detection of acute inflammation with In-111 labeled non-specific polyclonal IgG.Semin Nucl Med 1988; 18: 335–344.Google Scholar
  87. 87.
    Glaubitt D, Flügge K, Witt U, Schäfer E. Clinical value of delayed images in immunoscintigraphy using I-123 labeled monoclonal antigranulocyte antibodies in infection [abstract].Eur J Nucl Med 1993; 20: 941.Google Scholar
  88. 88.
    Lind P, Langsteger W, Koltringer P, et al. Immunoscintigraphy of inflammatory processes with a technetium-99m labeled monoclonal antigranulocyte antibody (MAb BW 250d83).J Nucl Med 1990; 31: 417–423.Google Scholar
  89. 89.
    Oyen WJG, Claessens RAMJ, VanHorn JR, et al. Scintigraphic detection of bone and joint infections with indium-111 labeled nonspecific polyclonal human immunoglobulin G.J Nucl Med 1990, 31: 403–412.Google Scholar
  90. 90.
    Oyen WJG, Netten PM, Lemmens JAM, et al. Evaluation of infectious diabetic foot complications with indium-111 labeled human nonspecific immunoglobulin G.J Nucl Med 1992;33:1330–1336.Google Scholar
  91. 91.
    Rubin RH, Young LS, Hansen WP, et al. Specific and nonspecific imaging of localized Fisher immunotype 1 andPseudomonas aeruginosa infection with radiolabeled monoclonal antibody.J Nucl Med 1988; 29: 651–656.Google Scholar
  92. 92.
    Serafmi A, Alavi A, Tumeh S, et al. Multicenter phase II trial of In-DTPA-IgG.Eur J Nucl Med 1993; 20: 825.Google Scholar
  93. 93.
    Sciuk J, Brandau W, Vollet B, et al. Comparison of technetium-99m polyclonal human immunoglobulin and technetium-99m monoclonal antibodies for imaging chronic osteomyelitis.Eur J Nucl Med 1991; 18: 401–407.Google Scholar
  94. 94.
    Beltran J, Campanini DS, Knight C, et al. The diabetic foot: magnetic resonance imaging evaluation.Skeletal Radiology 1990;19:37–41.Google Scholar
  95. 95.
    Meyers P, Wiener S. Diagnosis of hematogenous pyogenic vertebral osteomyelitis by magnetic resonance imaging.Arch Intern Med 1991; 151: 683–687.Google Scholar
  96. 96.
    Moore JE, Yuh WTC, Kathol MH, et al. Abnormalities of the foot in patients with diabetes mellitus: findings on MR imaging.AJR 1991; 157: 813–816.Google Scholar
  97. 97.
    Tang JSH, Gold RH, Bassett LW, et al. Musculoskeletal infection of the extremities: evaluation with MR imaging.Radiology 1988; 166: 205–209.Google Scholar
  98. 98.
    Tumeh SS, Aliabadi P, Weissman BN, et al. Disease activity in osteomyelitis: role of radiography.Radiology 1987; 165: 781–784.Google Scholar
  99. 99.
    Carstens MC, Erdman WA, Tamburro F, et al. Osteomyelitis: comparison of MRI and radionuclide (RN) studies.J Nucl Med 1992; 33: 992.Google Scholar
  100. 100.
    Kim CK, Kim SY, Alavi A, et al. Chronic osteomyelitis at the site of fracture or surgery in the lower extremity: In-111 WBC vs MRI.J Nucl Med 1992; 33: 902.Google Scholar
  101. 101.
    Propst-Proctor SL, Dillingham MF, McDougall IR, et al. The white blood cell scan in orthopedics.Clin Orthop 1982; 168: 157–165.Google Scholar
  102. 102.
    Tumeh SS, Tohmeh AG: Nuclear medicine techniques in septic arthritis and osteomyelitis.Rheum Dis Clin North Am 1991;17:559–583.Google Scholar
  103. 103.
    Tumeh SS, Aliabadi P, Seltzer SE, et al. Chronic osteomyelitis: the relative role of plain radiographs and transmission computed tomography.Clin Nucl Med 1988; 13: 710.Google Scholar
  104. 104.
    Giurini JM, Chizan JS, Gibbons GW, et al. Charcot's disease in diabetic patients. Correct diagnosis can prevent progressive deformity.Postgrad Med 1991; 89: 163–169.Google Scholar
  105. 105.
    Zieger LS, Fox IM. Use of indium-111-labeled white blood cells in the diagnosis of diabetic foot infections.J Foot Surg 1990; 29: 46–51.Google Scholar
  106. 106.
    Glynn TP. Marked gallium accumulation in neurogenic arthropathy.J Nucl Med 1986; 22: 1016.Google Scholar
  107. 107.
    Teichner LM, Eiser CA, Laine W. Indium-111 imaging in osteomyelitis and neuroarthropathy: review and case report. J Am Podiatr Med Assoc 1986; 76: 23–29.Google Scholar
  108. 108.
    Yuh WTC, Corson JD, Baraniewski HM, et al. Osteomyelitis of the foot in diabetic patients: evaluation with plain film, Tc-99m MDP bone scintigraphy and MR imaging.AJR 1989;152:795–800.Google Scholar
  109. 109.
    Seabold JE, Flickinger FW, Kao SCS, et al. Indium-111-leukocyte/technetium-99m MDP bone and magnetic resonance imaging: difficulty of diagnosing osteomyelitis in patients with neuropathic osteoarthropathy.J Nucl Med 1990; 31: 549–556.Google Scholar
  110. 110.
    Schlaeffer F, Mikolich DJ, Mates SM. Technetium-99m diphosphonate bone scan. False-normal findings in elderly patients with hematogenous vertebral osteomyelitis.Arch Intern Med 1987; 147: 2024–2026.Google Scholar
  111. 111.
    Abbey DM, Hosea SW. Diagnosis of vertebral osteomyelitis in a community hospital by using computed tomography.Arch Intern Med 1989; 149: 2029–2035.Google Scholar
  112. 112.
    Kern RZ, Houpt TB. Pyogenic vertebral osteomyelitis: diagnosis and management.Can Med Assoc J 1984; 130: 1025–1028.Google Scholar
  113. 113.
    Palestro CJ, Kim CK, Swyer AJ, et al. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy.J Nucl Med 1991; 32: 1861–1865.Google Scholar
  114. 114.
    Whalen JL, Brown ML, McLeod R, et al. Limitations of indium leukocyte imaging for the diagnosis of spine infections.Spine 1991; 16: 193–197.Google Scholar
  115. 115.
    Fernandez-Ulloa M, Vasavada PJ, Hanslits MJ, et al. Vertebral osteomyelitis imaging with In-111 labeled white blood cells and Tc-99m bone scintigrams.Orthopedics 1985; 8: 1144–1150.Google Scholar
  116. 116.
    Reuland P, Winker KH, Heuchert T, et al. Detection of infection in post-operative orthopedic patients with Tc-99m labeled monoclonal antibodies against granulocytes.J Nucl Med 1991; 32: 2209–2214.Google Scholar
  117. 117.
    Cahill DW, Love LC, Rechtine GR. Pyogenic osteomyelitis of the spine in the elderly.J Neurosurg 1991; 74: 878–886.Google Scholar
  118. 118.
    Lisbona R, Derbekyan V, Novales-Diaz J, et al. Gallium-67 scintigraphy in tuberculosis and non tuberculosis infectious spondylitis.J Nucl Med 1993; 34: 853–859.Google Scholar
  119. 119.
    Quinn SF, Murray W, Clark RA, et al. MR imaging of chronic osteomyelitis.J Comput Assist Tomogr 1988; 12: 113–117.Google Scholar
  120. 120.
    Kim EE, Haynie TP, Podoloff DA, et al. Radionuclide imaging in the evaluation of osteomyelitis and septic arthritis.Crit Rev Diagn Imaging 1989; 29: 257–305.Google Scholar
  121. 121.
    Pring DJ, Henderson RG, Keshavarzian A, et al. Indium-111 granulocyte scanning in the painful prosthetic joint.AJR 1986;146: 167.Google Scholar
  122. 122.
    Johnson JA, Christle MJ, Sandler MP, Parks PF Jr, Horma L, Kayle JJ. Detection of occult infection following total joint arthroplasty using sequential technetium-99m HPD bone scintigraphy and indium-111 WBC imaging.J Nucl Med 1988;29:1347–1353.Google Scholar
  123. 123.
    Oswald SG, VanNostrand D, Savory CG, et al. Three phase bone scan and indium white blood cell scintigraphy following porous-coated hip arthroplasty: a prospective study of the prosthetic hip.J Nucl Med 1989; 30: 1321–1331.Google Scholar
  124. 124.
    Oswald SG, VanNostrand D, Savory CG, et al. The acetabulum: a prospective study of three-phase bone and indium white blood cell scintigraphy following porous coated hip arthroplasty.J Nucl Med 1990; 31: 274–280.Google Scholar
  125. 125.
    Palestro CJ, Swyer AJ, Kim CK, et al. Infected knee prosthesis: diagnosis with In-111 leukocyte, Tc-99m sulfur colloid and Tc-99m MDP imaging.Radiology 1991; 179: 645–648.Google Scholar
  126. 126.
    Palestro CJ, Roumanas P, Swyer AJ, et al. Diagnosis of musculoskeletal infection using combined In-111 labeled leukocyte and Tc-99m S.C. marrow imaging.Clin Nucl Med 1992; 17:269–273.Google Scholar
  127. 127.
    Oyen WJG, VanHorn JR, Claessens RAMJ, et al. Diagnosis of bone, joint and joint prosthesis infections with In-11l labeled nonspecific human immunoglobulin G scintigraphy.Radiology 1992; 182: 195–199.Google Scholar
  128. 128.
    Greenwald L, Fajman W. Utility of gallium scans in differentiating osteomyelitis from infection in sickle cell patients [abstract].Clin Nucl Med 1982; 7: 71.Google Scholar
  129. 129.
    VanHorne RS, Starshak J, Chusid MJ. Chronic, recurrent multifocal osteomyelitis. Case report and review of literature.Clin Pediatr 1989; 28: 54–59.Google Scholar
  130. 130.
    Majid HA, Kalaawi M, Mohanty D, et al. Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in 3 related children and the association with Sweet's syndrome in two siblings.J Pediatr 1989; 115: 730–734.Google Scholar
  131. 131.
    Mortensson W, Edeburn G, Fries M, Nilsson R. Chronic recurrent multifocal osteomyelitis in children — a roentgenologic and scintigraphic investigation.Acta Radiol 1988; 29: 565–570.Google Scholar
  132. 132.
    Meller Y, Yagupsky P, Elitsur Y, et al. Chronic multifocal symmetrical osteomyelitis.Am J Dis Child 1984; 138: 349–351.Google Scholar
  133. 133.
    Oyen WJG, Claessens RAMJ, Van der Meer JWM, et al. Detection of subacute infections foci with In-111-labeled autologous leukocytes and In-111-labeled human nonspecific immunoglobulin G: a prospective comparative study.J Nucl Med 1991; 32: 1854–1860.Google Scholar
  134. 134.
    Hotze AL, Briele B, Rieker O, et al. Detection of bone and joint inflammation with Tc-99m human unspecific immunoglobulin (HIG).J Nucl Med 1992; 33: 839–840.Google Scholar
  135. 135.
    Hovi I, Taavitsainen M, Lantto T, et al. Technetium-99m-HMPAO-labeled leukocytes and technetium-99m-labeled human polyclonal immunoglobulin G in diagnosis of focal purulent disease.J Nucl Med 1993: 34: 1428–1434.Google Scholar
  136. 136.
    McHenry MC, Duchesneau PM, Keys TF, et al. Vertebral osteomyelitis presenting as spinal compression fracture: six patients with underlying osteoporosis.Arch Intern Med 1988; 148:417–423.Google Scholar
  137. 137.
    Ash TM, Gilday DL. The futility of bone scanning in neonatal osteomyelitis: concise communication.J Nucl Med 1980; 21:417–420.Google Scholar
  138. 138.
    Bressler EL, Conway JJ, Weiss SC. Neonatal osteomyelitis examined by bone scintigraphy.Radiology 1984; 152: 685–688.Google Scholar
  139. 139.
    Fernandez M, Stern PJ, Volarich DT, et al. Evaluations of IN111 white blood cells in the detection of skeletal disease.J Nucl Med 1982; 23: P29.Google Scholar
  140. 140.
    Iles SE, et al. Indium-111 chloride scintigraphy in adult osteomyelitis.J Nucl Med 1987; 28: 1540–1545.Google Scholar
  141. 141.
    Esterhai JL, et al. Indium-111 leukocyte scintigraphic detection of subclinical osteomyelitis complicating delayed and nonunion long bone fractures: a prospective study.J Orthop Res 1987; 5: 1–6.Google Scholar
  142. 142.
    Fischer GW, Popick GA, Sullivan DO, et al. Diskitis: a prospective diagnostic analysis.Pediatrics 1978; 62: 544–548.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Abdelhamid H. Elgazzar
    • 1
  • Hussein M. Abdel-Dayem
    • 2
    • 3
  • James D. Clark
    • 1
  • Harry R. MaxonIII
    • 1
  1. 1.Department of Radiology, Eugene L. Saenger Radioisotope LaboratoryUniversity of Cincinnati Medical CenterCincinnatiUSA
  2. 2.Department of RadiologyNew York Medical CollegeValhalla
  3. 3.Department of Radiology, Nuclear Medicine SectionSt. Vincent's Hospital and Medical Center of New YorkNew YorkUSA

Personalised recommendations