European Journal of Nuclear Medicine

, Volume 22, Issue 9, pp 977–988 | Cite as

Beta-particle dosimetry in radiation synovectomy

  • L. S. Johnson
  • J. C. Yanch
  • S. Shortkroff
  • C. L. Barnes
  • A. I. Spitzere
  • C. B. Sledge
Original Article


Beta-particle dosimetry of various radionuclides used in the treatment of rheumatoid arthritis was estimated using Monte Carlo radiation transport simulation coupled with experiments using reactor-produced radionuclides and radiachromic film dosimeters inserted into joint phantoms and the knees of cadavers. Results are presented as absorbed dose factors (cGy-cm2/MBq-s) versus depth in a mathematical model of the rheumatoid joint which includes regions of bone, articular cartilage, joint capsule, and tissue (synovium) found in all synovial joints. The factors can be used to estimate absorbed dose and dose rate distributions in treated joints. In particular, guidance is provided for those interested in (a) a given radionuclide's therapeutic range, (b) the amount of radioactivity to administer on a case-by-case basis, (c) the expected therapeutic dose to synovium, and (d) the radiation dose imparted to other, nontarget components in the joint, including bone and articular cartilage.

Key words

Dosimetry Radiation synovectomy Monte Carlo simulation Rheumatoid arthritis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fellinger K, Schmid J. Die lokale Behandlung der rheumatischen Erkrankungen.Wien Z Inn Med 1952; 33: 351.Google Scholar
  2. 2.
    Deutsch E, Brodack JW, Deutsch KF. Radiation synovectomy revisited.Eur J Nucl Med 1993; 20: 1113–1127.Google Scholar
  3. 3.
    Harbert JC.Nuclear medicine therapy. New York: Thieme Medical, 1987.Google Scholar
  4. 4.
    Webb FWS, Lowe J, Bluestone R. Uptake of colloidal radioactive yttrium by synovial membrane.Ann Rheum Dis 1969; 28: 300–302.Google Scholar
  5. 5.
    Ingrand J. Characteristics of radio-isotopes for intra-articular therapy.Ann Rheum Dis 1973; 32 Suppl: 3–9.Google Scholar
  6. 6.
    Bowen BM, Darracott J, Garnett ES, Tomlinson RH. Yttrium-90 citrate colloid for radioisotope synovectomy.Am J Hosp Pharm 1975; 32: 1027–1030.Google Scholar
  7. 7.
    Shortkroff S, Jones AG, Sledge CB. Radiation synovectomy. In:Advances in metals in medicine. JAI Press; 1993: 155–186.Google Scholar
  8. 8.
    Noble J, Jones AG, Davis MA, Sledge CB, Kramer RI, Livni E. Leakage of radioactive particle systems from a synovial joint studied with a gamma camera: its application to radiation synovectomy.J Bone Joint Surg [Am] 1983; 65: 381–389.Google Scholar
  9. 9.
    Sledge CB, Noble J, Hnatowich DJ, Kramer R, Shortkroff S. Experimental radiation synovectomy by 165-Dy ferric hydroxide macroaggregate.Arthritis Rheum 1977; 20: 1334–1342.Google Scholar
  10. 10.
    Shortkroff S, Mahmood A, Sledge CB, Jones AG, Brodack JW, Chinen LK, Deutsch E, Deutsch KF. Studies on Ho-166-labeled hydroxyapatite: a new agent for radiation synovectomy.J Nucl Med 1992; 33: 937.Google Scholar
  11. 11.
    Brodack JW, Chinen LK, Deutsch E, Deutsch KF. Studies on the radiolabeling of hydroxyapatite particles for use as radiation synovectomy agents.J Nucl Med 1992; 33: 980.Google Scholar
  12. 12.
    Johnson LS, Yanch JC. Absorbed dose profiles for radionuclides of frequent use in radiation synovectomy.Arthritis Rheum 1991; 34: 1521–1530.Google Scholar
  13. 13.
    Nelson WR, Hirayama H, Rogers DWO.The EGS4 code system. Stanford Linear Accelerator Center, 1985.Google Scholar
  14. 14.
    Hogan OH, Zigman PE, Mackin JL.Beta spectra II. Spectra of individual negatron emitters. United States Radiological Defense Laboratory, 1964.Google Scholar
  15. 15.
    Jenkins TM, Nelson WR, Rindi A, eds.Monte Carlo transport of electrons and photons. New York: Plenum Press, 1987.Google Scholar
  16. 16.
    ICRU-44: tissue substitutes in radiation dosimetry and measurement. International Commission on Radiation Units and Measurements, 1989.Google Scholar
  17. 17.
    Constantinou C.Tissue substitutes for particulate radiations and their use in radiation dosimetry and radiotherapy. PhD thesis, University of London, 1978.Google Scholar
  18. 18.
    Constantinou C, Attix FH, Paliwal BR. A solid water phantom material for radiotherapy x-ray andγ-ray beam calibrations.Med Phys 1982; 9: 436–441.Google Scholar
  19. 19.
    Chalkley L, Phototrophy.Chem Rev 1929; 6: 217.Google Scholar
  20. 20.
    McLaughlin WL, Chalkley L. Measurement of radiation dose distributions with photochromic materials.Radiology 1965; 84: 124.Google Scholar
  21. 21.
    Humphreys KC, Kantz AD. Radiachromic: a radiation-monitoring system.Radiat Phys Chem 1977; 9: 737–747.Google Scholar
  22. 22.
    Hnatowich DJ, Kramer RI, Sledge CB, Noble J, Shortkroff S. Dysprosium-165 ferric hydroxide macroaggregates for radiation synovectomy.J Nucl Med 1978; 19: 303–308.Google Scholar
  23. 23.
    Ansell BM, Crook A, Mallard JR, Bywaters EGL. Evaluation of intra-articular colloidal gold Au-198 in the treatment of persistent knee effusions.Ann Rheum Dis 1963; 22: 435–439.Google Scholar
  24. 24.
    Husak V, Wiederman M, Kral M. Absorbed dose due to beta-rays from radioactive colloids in radiation synovectomy.Phys Med Biol 1973; 18: 848–854.Google Scholar
  25. 25.
    Topp JR, Cross EG. The treatment of persistent knee effusions with intra-articular radioactive gold.CMA Journal 1970; 102: 709–714.Google Scholar
  26. 26.
    Prichard HL, Bridgman JF, Bleehan NM. An investigation of radioactive yttrium (90Y) for the treatment of chronic knee effusions.Br J Rheum 1970; 43: 466–470.Google Scholar
  27. 27.
    Gumpel JM, Williams ED, Glass HI. Use of yttrium 90 in persistent synovitis of the knee. I. Retention in the knee and spread in the body after injection.Ann Rheum Dis 1973; 32: 223–227.Google Scholar
  28. 28.
    Gumpel JM, Beer TC, Crawley JC, Farran HE. Yttrium 90 in persistent synovitis of the knee: a single center comparison of four radiocolloids.Br J Radiol 1975; 48: 377–381.Google Scholar
  29. 29.
    Oka M, Rekonen A, Routsi A, Seppala O. Intra-articular injection of Y-90 resin colloid in the treatment of rheumatoid knee effusions.Acta Rheumatol Scand 1971; 17: 148–160.Google Scholar
  30. 30.
    Deckart H, Tamaschke J, Ett S, Tautz M, Knapp G. Radiosynovectomy of the knee joint with gold-198 colloid, yttrium-90 ferric hydrate colloid and rhenium-186 sulphide colloid.Radiobiol Radiother (Berlin) 1979; 3: 363–370.Google Scholar
  31. 31.
    Virkkunen M, Krusius FE, Keiskanen T. Experiences of intraarticular administration of radioactive gold.Acta Rheumatol Scand 1967; 13: 81–91.Google Scholar
  32. 32.
    Kyle V, Hazelman BL, Wraight EP. Yttrium-90 therapy and Tc- 99m pertechnetate knee uptake measurements in the management of rheumatoid arthritis.Ann Rheum Dis 1983; 42: 132–137.Google Scholar
  33. 33.
    Spooren PFMJ, Rasker JJ, Arens RPJH. Synovectomy of the knee with 90Y.Eur J Nucl Med 1985; 10: 441–445.Google Scholar
  34. 34.
    Will R, Laing B, Edelman J, Lovegrove F, Surveyor I. Comparison of two yttrium-90 regimens in inflammatory and osteoarthropathies.Ann Rheum Dis 1979; 38: 45–47.Google Scholar
  35. 35.
    ICRP-26: recommendations of the ICRP. International Commission on Radiation Protection, 1977.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • L. S. Johnson
    • 1
  • J. C. Yanch
    • 1
  • S. Shortkroff
    • 2
  • C. L. Barnes
    • 2
  • A. I. Spitzere
    • 2
  • C. B. Sledge
    • 2
  1. 1.Department of Nuclear Engineering and Whitaker College of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Orthopedic SurgeryBrigham and Women's HospitalBostonUSA

Personalised recommendations