Amino Acids

, Volume 1, Issue 1, pp 81–89 | Cite as

Monosodium glutamate induced convulsions in rats: Influence of route of administration, temperature and age

  • R. Peñafiel
  • A. Cremades
  • F. Monserrat
  • L. Puelles

Summary

Treatment of developing rats with monosodium glutamate (MSG) produces an increase of glutamate levels in the brain, being this elevation dependent on both route of administration and animal's age. The capacity of exogenous MSG to induce convulsions seems to be related to the rate of glutamate elevation in the brain, rather than to the absolute value of glutamate concentration reached. Short exposure of MSG-treated rats to moderate hyperthermia potentiated the convulsive incidence and extended the brain damage to areas not affected by treatment with MSG alone, suggesting that the synergic effect of hyperthermia on glutamate neurotoxicity may be related to an increase in the permeability of the blood-brain barrier in the hyperthermic developing rats.

Keywords

Monosodium glutamate Convulsion Hyperthermia Developing brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dawson R (1986) Neuroendocrinology 42: 158–166Google Scholar
  2. 2.
    Dawson R, Annau Z (1983) Neurobehav Toxicol Teratol 5: 399–406Google Scholar
  3. 3.
    Frieder B, Grimm V (1987) J Neurochem 48: 1359–1365Google Scholar
  4. 4.
    Squibb RE, Tilson HA, Meyer OA, Lamartiniere CA (1981) Neurotoxicology 2: 471–484Google Scholar
  5. 5.
    Nemeroff CB, Grant LD, Bissette G, Ervin GN, Harrell LE, Prange AJ (1977) Psychoneuroendocrinology 2: 179–196Google Scholar
  6. 6.
    Garattini S (1979) In: Wurtman RJ, Wurtman JI (eds) Nutrition of the brain. Raven Press, New York, pp 79–124Google Scholar
  7. 7.
    Lucas DR, Newhouse JP (1975) Arch Ophthalmol 58: 193–201Google Scholar
  8. 8.
    Potts AM, Mochell KW, Kingsbury C (1980) Am J Opthalmol 50: 900–907Google Scholar
  9. 9.
    Rasher K (1981) Cell Tiss Res 220: 239–250Google Scholar
  10. 10.
    Olney JW (1969) Science 164: 719–721Google Scholar
  11. 11.
    Olney JW (1971) J Neuropath 30: 75–95Google Scholar
  12. 12.
    Perez VJ, Olney JW, Robin SJ (1973) Brain Res 59: 181–189Google Scholar
  13. 13.
    Takasaki J (1978) Toxicology 9: 293–305Google Scholar
  14. 14.
    Stegink LD, Filer LJ, Baker GL, Bell EF (1986) Pediatr Res 20: 53–58Google Scholar
  15. 15.
    Caccia S, Garattini S, Ghezzi P, Zanini MG (1982) Toxicol Lett 10: 169–175Google Scholar
  16. 16.
    Plaitakis A, Berl S (1983) J Neurol Transm 19: 65–74Google Scholar
  17. 17.
    Mushahwar IK, Koeppe RE (1971) Biochim Biophys Acta 244: 318–321Google Scholar
  18. 18.
    Liebschutz J, Airoldi L, Brownstein MJ, Chinn NG, Wurtman RJ (1977) Biochem Pharmacol 26: 443–446Google Scholar
  19. 19.
    Peñafiel R, Cremades A, Puelles L, Montserrat F (1985) Neurochem Int 7: 237–242Google Scholar
  20. 20.
    Toth E, Lajtha A (1981) Neurochem Res 6: 1301–1317Google Scholar
  21. 21.
    Bhagavan HN, Coursin DB, Stewart CN (1971) Nature 232: 275–276Google Scholar
  22. 22.
    Johnston GA (1973) Biochem Pharmacol 22: 137–140Google Scholar
  23. 23.
    Stewart CN, Coursin DB, Bhagavan HN (1972) Toxicol Appl Pharmacol 23: 635–639Google Scholar
  24. 24.
    Nemeroff CB, Crisley FD (1975) Pharmacol Biochem Behav 3: 927–929Google Scholar
  25. 25.
    Wiechert P, Herbst A (1966) J Neurochem 13: 59–64Google Scholar
  26. 26.
    Sloviter RS, Dempster DW (1985) Brain Res Bull 15: 39–60Google Scholar
  27. 27.
    Arauz-Contreras J, Feria Velasco A (1984) Gen Pharmacol 15: 391–395Google Scholar
  28. 28.
    Schwarcz R, Meldrum B (1985) Lancet ii: 140–144Google Scholar
  29. 29.
    Janjua NA, Eeg-Olofsson O, Andermann E, Lemieux B, Giguere R, Guttmann RD, Osterland K (1987) In: Engel J (ed) Fundamental mechanism of human brain function. Raven Press, New York, pp 267–278Google Scholar
  30. 30.
    Bradbury M (1979) In: The concept of a blood-brain barrier. John Wiley and Sons, New York, pp 289–332Google Scholar
  31. 31.
    Drejer J, Larsson OM, Kvamme E, Svenneby G, Hertz L, Schousboe A (1985) Neurochem Res 10: 49–62Google Scholar
  32. 32.
    Nemeroff CB, Crisley FD (1975) Environ Physiol Biochem 5: 389–395Google Scholar
  33. 33.
    Cornford EM, Oldendorf WH (1986) In: Delgado Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Raven Press, New York, pp 787–812Google Scholar
  34. 34.
    Sandoval ME, Torner CA, Medrano L (1984) Neuroscience 11: 867–875Google Scholar
  35. 35.
    Hitzemann R, Mark C, Panini A (1984) Neurochem Int 6: 133–139Google Scholar
  36. 36.
    Mc Caughran JA, Schechter N (1982) Epilepsia 23: 173–183Google Scholar
  37. 37.
    Mc Caughran JA, Manetto C (1983) Experim Neurol 79: 287–292Google Scholar
  38. 38.
    Zilles K, Wree A (1985) In: Paxinos G (ed) The rat nervous system, vol 1. Academic Press, London, pp 375–416Google Scholar
  39. 39.
    Smart IHM, Smart M (1982) J Anat 134: 273–298Google Scholar
  40. 40.
    Smart IHM (1984) J Anat 138: 537–552Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • R. Peñafiel
    • 1
  • A. Cremades
    • 2
  • F. Monserrat
  • L. Puelles
    • 3
  1. 1.Departments of Biochemistry and Molecular BiologyFaculty of Medicine, University of MurciaMurciaSpain
  2. 2.Departments of PharmacologyFaculty of Medicine, University of MurciaMurciaSpain
  3. 3.Departments of AnatomyFaculty of Medicine, University of MurciaMurciaSpain

Personalised recommendations