Advertisement

Amino Acids

, Volume 10, Issue 1, pp 21–47 | Cite as

L-Tryptophan: Biochemical, nutritional and pharmacological aspects

  • E. -L. Sainio
  • K. Pulkki
  • S. N. Young
Review Article

Summary

Tryptophan is important both for protein synthesis and as a precursor of niacin, serotonin and other metabolites. Tryptophan is an unusual amino acid because of the complexity of its metabolism, the variety and importance of its metabolites, the number and diversity of the diseases it is involved in, and because of its use in purified form as a pharmacological agent. This review covers the metabolism of tryptophan, its presence in the diet, the disorders associated with low tryptophan levels due to low dietary intake, malabsorption, or high rates of metabolism, the therapeutic effects of tryptophan and the side effects of tryptophan when it is used as a drug including eosinophilia myalgia syndrome.

Keywords

Amino acids Tryptophan Food Eosinophilia myalgia syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott FV, Etienne P, Franklin KBJ, Morgan MJ, Sewitch MJ, Young SN (1992) Acute tryptophan depletion blocks morphine analgesia in the cold-pressor test in humans. Psychopharmacology 108: 60–66Google Scholar
  2. Achim CL, Heyes MP, Wiley CA (1993) Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest 91: 2769–2775Google Scholar
  3. Akiba Y, Takahashi K, Horiguchi M, Ohtani H, Saitoh S, Ohkawara H (1992) L-Tryptophan alleviates fatty liver and modifies hepatic microsomal mixed function oxidase in laying hens. Comp Biochem Physiol 102: 769–774Google Scholar
  4. Altman K, Greengard O (1966) Tryptophan pyrrolase induced in human liver by hydrocortisone: effect on excretion of kynurenine. Science 151: 332–333Google Scholar
  5. Ashley DVM, Barclay DV, Chauffard F, Moennoz D, Leathwood PD (1982) Plasma amino acid responses in humans to evening meals of differing nutritional composition. Am J Clin Nutr 36: 143–153Google Scholar
  6. Ashley DVM, Liardon R, Leathwood PD (1985) Breakfast meal composition influences plasma tryptophan to large neutral amino acid ratios of healthy lean young men. J Neural Transm 63: 271–283Google Scholar
  7. Auffranc JC, Berbis PH, Fabre JF, Garnier JP, Privat Y (1985) Syndrome sclerodermiforme et poikilodermique observe au cours d'un traitment par carbidopa et 5-hydroxy-tryptophan. Ann Dermatol Venereol 112: 691–692Google Scholar
  8. Aviram M, Cogan U, Mokady S (1991) Excessive dietary tryptophan enhances plasma lipid peroxidation in rats. Atherosclerosis 88: 29–34Google Scholar
  9. Baldessarini RJ (1984) Treatment of depression by altering monoamine metabolism: precursors and metabolic inhibitors. Psychopharmacol Bull 20: 224–239Google Scholar
  10. Beeken WL (1976) Serum tryptophan in Crohn's disease. Scand J Gastroenterol 11: 735–740Google Scholar
  11. Belongia EA, Hedberg CW, Gleich GJ, White KE, Mayeno AN, Loegering DA, Dunnette SL, Pirie PL, MacDonald KL, Osterholm MT (1990) An investigation of the cause of the eosinophilia-myalgia syndrome associated with tryptophan use. N Engl J Med 323: 357–365Google Scholar
  12. Belongia EA, Mayeno AN, Osterholm MT (1992) The eosinophilia-myalgia syndrome and tryptophan. Ann Rev Nutr 12: 235–256Google Scholar
  13. Birkmayer W, Danielczyk W, Neumayer E, Riederer P (1972) The balance of biogenic amines as condition for normal behavior. J Neural Transm 33: 163–178Google Scholar
  14. Birkmayer W, Danielczyk W, Neumayer E, Riederer P (1974) Nucleus rubre and L-dopa psychosis: biochemical post-morten findings. J Neural Transm 35: 93–116Google Scholar
  15. Blauvelt A, Falanga V (1991) Idiopathic and L-tryptophan-associated eosinophilic fascitis before and after L-tryptophan contamination. Arch Dermatol 127: 1159–1166Google Scholar
  16. Blum K, Trachtenberg MC, Cook DW (1990) Neuronutrient effects on weight loss in carbohydrate bingers: an open clinical trial. Curr Ther Res 48: 217–233Google Scholar
  17. Bochner BS, Friedman B, Krishnaswami G, Schleimer RP, Lichtenstein LM, Kroegel C (1991) Episodic Eosinophilia-Myalgia like syndrome in a patient without L-tryptophan use: association with eosinophil activation and increased serum levels of granulocyte-macrophage colony stimulating factor. J Allerg Clin Immunol 88: 629–636Google Scholar
  18. Boman B (1988) L-Tryptophan: a rational anti-depressant and a natural hypnotic. Aust N Z J Psychiatry 22: 83–97Google Scholar
  19. Boulton AA (1979) Trace amines in the central nervous system. In: Tipton KF (ed) International review of biochemistry: physiological and pharmacological biochemistry. University Park Press, Baltimore, pp 179–206Google Scholar
  20. Bryan GT (1971) The role of urinary tryptophan metabolites in the etiology of bladder cancer. Am J Clin Nutr 24: 841–847Google Scholar
  21. Carlson JR, Yokoyama MT, Dickinson EO (1972) Induction of pulmonary edema and emphysema in cattle and goats with 3-methylindole. Science 176: 298–299Google Scholar
  22. Carpenter KJ (1981) Effects of different methods of processing maize on its pellagragenic activity. Federation Proc 40: 1531–1535Google Scholar
  23. Carr L, Ruther E, Berg PA, Lehnert H (1994) Eosinophilia-myalgia syndrome in Germany: an epidemiologic review. Mayo Clin Proc 69: 620–625Google Scholar
  24. Castot A, Bidault I, Bournerias I, Carlier P, Efthymiou ML (1991) Eosinophilia-myalgia syndrome in France: 24 cases. Therapie 46: 355–365Google Scholar
  25. Ceccherelli F, Diani MM, Altafini L, Varotto E, Stefecius A, Casale R, Costola A, Giron GP (1991) Postoperative pain treated by intravenous L-tryptophan: a double-blind study versus placebo in cholecystectomized patients. Pain 47: 163–172Google Scholar
  26. Cho-Chung YS, Pitot HC (1967) Feedback control of rat liver tryptophan pyrrolase: I. End product inhibition of tryptophan pyrrolase activity. J Biol Chem 242: 1192–1198Google Scholar
  27. Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci USA 87: 2506–2510Google Scholar
  28. Clauw DJ, Flockhart DA, Mullins W, Katz P, Medsger TA (1994) Eosinophilia-myaligia syndrome not associated with the ingestion of nutritional supplements. J Rheumatol 21: 2385–2387Google Scholar
  29. Coccaro EF (1992) Impulsive aggression and central serotonergic system function in humans: an example of a dimensional brain-behavior relationship. Int Clin Psychopharmacol 7: 3–12Google Scholar
  30. Cole JO, Hartmann E, Brigham P (1980) L-Tryptophan: clinical studies. In: Cole JO (ed) Psychopharmacology update. Collamore Press, Lexington, MA, pp 119–148Google Scholar
  31. Cooper AJ (1979) Tryptophan antidepressant “physiological sedative”: fact or fancy? Psychopharmacology 61: 97–102Google Scholar
  32. Coppen A, Megcalfe M, Carroll JD, Morris JGL (1972) Levodopa and L-tryptophan therapy in parkinsonism. Lancet i: 654–658Google Scholar
  33. Cosgrove JW, Verney E, Schwartz AM, Sidransky H (1992) Tryptophan binding to nuclei of rat brain. Exp Mol Pathol 57: 180–192Google Scholar
  34. Crofford LJ, Rader JI, Dalakas MC, Hill RH, Page SW, Needham LL, Brady LS, Heyes MP, Wilder RL, Gold PW, Smith C, Sternberg EM (1990) L-Tryptophan implicated in human eosinophilia-myalgia syndrome causes fasciitis and perimyositis in the Lewis rat. J Clin Invest 86: 1757–1763Google Scholar
  35. Curzon G, Knott PJ (1974) Effects on plasma and brain tryptophan in the rat of drugs and hormones that influence the concentration of unesterified fatty acid in the plasma. Br J Pharmacol 50: 197–204Google Scholar
  36. DeMeyer MK, Shea PA, Hendrie HC, Yoshimura NN (1981) Plasma tryptophan and five other amino acids in depressed and normal subjects. Arch Gen Psychiatry 38: 642–646Google Scholar
  37. Dunlop SR, Hendrie HC, Shea PA, Brittain HM (1983) Ratio of plasma tryptophan to five other amino acids in depressed subjects: a follow-up. Arch Gen Psychiatry 40: 1033–1034Google Scholar
  38. Ekblom A, Hansson P, Thomsson M (1991) L-Tryptophan supplementation does not affect postoperative pain intensity or consumption of analgesics. Pain 44: 249–254Google Scholar
  39. Emerit MB, Riad M, Hamon M (1992) Trophic effects of neurotransmitters during brain maturation. Biol Neonate 62: 193–201Google Scholar
  40. Etienne P, Young SN, Sourkes TL (1976) Inhibition by albumin of tryptophan uptake by rat brain. Nature 262: 144–145Google Scholar
  41. Fahn S, Snider S, Prasad ALN, Lane E, Makadon H (1975) Normalization of brain serotonin by L-tryptophan in levodopa-treated rats. Neurology 25: 861–865Google Scholar
  42. Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149–152Google Scholar
  43. Flockhart DA, Clauw DJ, Sale EB, Hewett J, Woosley RL (1994) Pharmacogenetic characteristics of the eosinophilia-myalgia syndrome. Clin Pharmacol Ther 56: 398–405Google Scholar
  44. Franklin KBJ, Abbott FV, English MJM, Jeans ME, Tasker RAR, Young SN (1990) Tryptophan-morphine interactions and postoperative pain. Pharmacol Biochem Behav 35: 157–163Google Scholar
  45. Friedman M, Cuq JL (1988) Chemistry, analysis, nutritional value and toxicology of tryptophan in food: a review. J Agric Food Chem 36: 1079–1093Google Scholar
  46. Fuchs D, Forsman A, Hagberg L, Larsson M, Norkrans G, Reibnegger G, Werner ER, Wachter H (1990a) Immune activation and decreased tryptophan in patients with HIV-1 infection. J Interferon Res 10: 599–603Google Scholar
  47. Fuchs D, Möller AA, Reibnegger G, Stöckle E, Werner ER, Wachter H (1990b) Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J Acq Immune Def Synd 3: 873–876Google Scholar
  48. Fuchs D, Möller AA, Reibnegger G, Werner ER, Werner-Felmayer G, Dierich MP, Wachter H (1991) Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection. Immunol Lett 28: 207–212Google Scholar
  49. Fujiki H, Suganuma M, Tahira T, Esumi M, Nagao N, Wakabayashi K, Sugimura T (1984) New biological significance of indole-containing compounds as initiators or tumor promoters in chemical carcinogenesis. In: Schlossberger HG, Kochen W, Linzen B, Steinhart H (eds) Progress in tryptophan and serotonin research. Walter de Gruyter, Berlin, pp 793–802Google Scholar
  50. Funk DN, Worthington-Roberts B, Fantel A (1991) Impact of supplemental lysine or tryptophan on pregnancy course and outcome in rats. Nutr Res 11: 501–512Google Scholar
  51. Gehlen W, Müller J (1974) Zur Therapie der Dopa-Psychosen mit L-Tryptophan. Dtsch Med Wochenschr 99: 457–463Google Scholar
  52. Gerson SC, Baldessarini RJ (1980) Motor effects of serotonin in the central nervous system. Life Sci 27: 1435–1451Google Scholar
  53. Gessa GL, Tagliamonte A (1974) Possible role of free serum tryptophan in the control of brain tryptophan level and serotonin synthesis. In: Costa E, Gessa GL, Sandler M (eds) Serotonin — new vistas: biochemistry and behavioral and clinical studies: advances in biochemical psychopharmacology, vol 11. Raven Press, New York, pp 119–131Google Scholar
  54. Gillin JC, Kaplan JA, Wyatt RJ (1976) Clinical effects of tryptophan in chronic schizophrenic patients. Biol Psychiatry 11: 635–639Google Scholar
  55. Glaeser BS, Maher TJ, Wurtman RJ (1983) Changes in brain levels of acidic, basic, and neutral amino acids after consumption of single meals containing various proportions of proteins. J Neurochem 41: 1016–1021Google Scholar
  56. Golberger J, Wheeler GA (1915) Experimental pellagra in the human subject brought about by a restricted diet. Public Health Rep 30: 3336–3339Google Scholar
  57. Green AR, Sourkes TL, Young SN (1975) Liver and brain tryptophan metabolism following hydrocortisone administration to rats and gerbils. Br J Pharmacol 53: 287–292Google Scholar
  58. Gullino P, Winitz M, Birnbaum M, Cornfield J, Otey MC, Greenstein JP (1956) Studies on the metabolism of amino acids and related compoundsin vivo. I. Toxicity of essential amino acids, individually and in mixtures and the protective effect of L-arginine. Arch Biochem Biophys 64: 319–332Google Scholar
  59. Hallert C, Anström J (1982) Psychic disturbances in adult coeliac disease. II. Psychological findings. Scand J Gastroenterol 17: 21–24Google Scholar
  60. Hallert C, Sedvall G (1983) Improvement in central monoamine metabolism in adult coeliac patients starting a gluten-free diet. Psychol Med 13: 267–271Google Scholar
  61. Hallert C, Anström J, Sedvall G (1982a) Psychic disturbances in adult coeliac disease. III. Reduced central monoamine metabolism and signs of depression. Scand J Gastroenterol 17: 25–28Google Scholar
  62. Hallert C, Martensson J, Allgen LG (1982b) Brain availability of monoamine precursors in adult coeliac disease. Scand J Gastroenterol 17: 87–89Google Scholar
  63. Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50: 428–558Google Scholar
  64. Harper AE, Yoshimura NN (1993) Protein quality, amino acid balance, utilization, and evaluation of diets containing amino acids as therapeutic agents. Nutrition 9: 460–469Google Scholar
  65. Hartmann E, Cravens J, List S (1974) Hypnotic effects of L-tryptophan. Arch Gen Psychiatry 31: 394–397Google Scholar
  66. Hartmann E, Greenwald D (1984) Tryptophan and human sleep: an analysis of 43 studies. In: Schlossberger HG, Kochen W, Linzen B, Steinhart H (eds) Progress in tryptophan and serotonin research. Walter de Gruyter, Berlin, pp 297–304Google Scholar
  67. Hattori M, Kotake Y, Otsuka H, Shibata Y (1984) Studies on the urinary excretion of xanthurenic acid in diabetics. In: Schlossberger HG, Kochen W, Linzen B, Steinhart H (eds) Progress in tryptophan and serotonin research. Walter de Gruyter, Berlin, pp 347–354Google Scholar
  68. Hernanz A, Polanco I (1991) Plasma precursor amino acids of central nervous system monoamines in children with coeliac disease. Gut 32: 1478–1481Google Scholar
  69. Hertzman PA, Blevins WL, Mayer J, Greenfield B, Ting M, Gleich GJ (1990) Association of the eosinophilia syndrome with ingestion of tryptophan. N Engl J Med 322: 869–873Google Scholar
  70. Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mouradian MM, Sadler AE, Keilp J, Rubinow D, Markey SP (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29: 202–209Google Scholar
  71. Hibbs JR, Mittleman B, Hill P, Medsger TA (1992) L-Tryptophan associated eosinophilic fasciitis prior to the 1989 eosinophilia myalgia syndrome outbreak. Arthritis Rheum 35: 299–303Google Scholar
  72. Hill RH, Caudill SP, Philen RM, Bailey SL, Flanders WD, Driskell WJ, Kamb ML, Needham LL, Sampson EJ (1993) Contaminants in L-tryptophan associated with eosinophilia myalgia syndrome. Arch Environ Contam Toxicol 25: 134–142Google Scholar
  73. Hirata Y, Kawachi T, Sugimura T (1967) Fatty liver induced by injection of L-tryptophan. Biochim Biophys Acta 144: 233–241Google Scholar
  74. Hopkins FG, Cole SW (1901) A contribution to the chemistry of proteins. Part 1. A preliminary study of a hitherto undescribed product of tryptic digestion. J Physiol 27: 418–428Google Scholar
  75. Hornstein OP, Olszewsky ME, Flugel D, Kaschka WP (1989) Kann Lithium-Therapie eine progressive systemische Sklerodermie oder eosinophile Fascitis auslösen? Nervenheilkunde 8: 239–242Google Scholar
  76. Horwitt MK, Harvey CC, Rothwell WS, Cutler JL, Haffron D (1956) Tryptophan-niacin relationships in men: studies with diets deficient in riboflavin and niacin together with observations on the excretion of nitrogen and niacin metabolites. J Nutr 60 [Suppl] 1: 1–43Google Scholar
  77. Horwitt MK, Harper AE, Henderson LM (1981) Niacin-tryptophan relationships for evaluating niacin equivalents. Am J Clin Nutr 34: 423–427Google Scholar
  78. Huether G, Hajak G, Reimer A, Poeggeler B, Blomer M, Rodenbeck A, Ruther E (1992a) The metabolic fate of infused L-tryptophan in men: possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites. Psychopharmacology 109: 422–432Google Scholar
  79. Huether G, Poeggeler B, Reimer A, George A (1992b) Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 51: 945–953Google Scholar
  80. Huether G, Thomke F, Adler L (1992c) Administration of tryptophan-enriched diets to pregnant rats retards the development of the serotonergic system in their offspring. Dev Brain Res 68: 175–181Google Scholar
  81. Ikeda S, Kotake Y (1984) Urinary excretion of xanthurenic acid and zinc in diabetes. In: Schlossberger HG, Kochen W, Linzen B, Steinhart H (eds) Progress in tryptophan and serotonin research. Walter de Gruyter, Berlin, pp 355–358Google Scholar
  82. Ito J, Hosaki Y, Torigoe Y, Sakimoto K (1992) Identification of substances formed by decomposition of Peak E-substance in tryptophan. Food Chem Toxicol 30: 71–81Google Scholar
  83. Iwata H, Okamoto H, Koh S (1975) Effects of various drugs on serum free and total tryptophan levels and brain tryptophan metabolism in rats. Jpn J Pharmacol 25: 303–310Google Scholar
  84. Jaeger W, Käfer O, Schmidt H, Lutz P (1979) Bilateral optic atrophy in childhood caused by tryptophan deficiency. Metab Pediatr Ophthalmol 3: 167–169Google Scholar
  85. Johnson DJ, Anderson GH (1982) Prediction of plasma amino acid concentration from diet amino acid content. Am J Physiol 243: R99-R103Google Scholar
  86. Joseph MS, Brewerton TD, Reus VI, Stebbins GT (1984) Plasma L-tryptophan/neutral amino acid ratio and dexamethasone suppression in depression. Psychiatry Res 11: 185–192Google Scholar
  87. Kamb ML, Murphy JJ, Jones JL, Caston JC, Nederlof K, Horney LF, Swygert LA, Falk H, Kilbourne EM (1992) Eosinophilia-myalgia syndrome in L-tryptophan-exposed patients. J Am Med Assoc 267: 77–82Google Scholar
  88. Katz SH, Hediger ML, Valleroy LA (1974) Traditional maize processing techniques in the new world: traditional alkali processing enhances the nutritional quality of the maize. Science 184: 765–773Google Scholar
  89. Kaufman LD, Gruber BL, Gregersen PK (1991) Clinical follow-up and immunogenetic studies of 32 patients with eosinophilia-myalgia syndrome. Lancet 337: 1071–1074Google Scholar
  90. Kelly WF, Checkley SA, Bender DA (1980) Cushing's syndrome, tryptophan and depression. Br J Psychiatry 136: 125–132Google Scholar
  91. Kilbourne EM, Swygert LA, Philen RM, Sun RK, Aurbach SB, Miller L, Nelson DE, Falk H (1990) Interim guidance on the eosinophilia-myalgia syndrome. Ann Intern Med 112: 85–86Google Scholar
  92. King RB (1980) Pain and tryptophan. J Neurosurg 53: 44–52Google Scholar
  93. Knox WE (1966) The regulation of tryptophan pyrrolase activity by tryptophan. Adv Enzyme Regul 4: 287–297Google Scholar
  94. Krebs HA (1971) Reflections on the role of tryptophan derivatives on metabolic regulations. In: Guy KE, Carlson LA (eds) Metabolic effects of nicotinic acid and its derivatives: proceedings of a workshop at flims. Huber, Bern, pp 1115–1118Google Scholar
  95. Lader M (1994) The return of L-tryptophan. Hum Psychopharmacology 9: 365–366Google Scholar
  96. Lappin RI, Auchinloss EL (1994) Treatment of the serotonin syndrome with cyproheptadine. N Engl J Med 331: 1021–1022Google Scholar
  97. Lauer JW, Inskip WM, Bernsohn J, Zeller EA (1958) Observations on schizophrenic patients after iproniazid and tryptophan. A M A Arch Neurol Psychiatr 80: 122–130Google Scholar
  98. Lehmann J (1972) Mental and neuromuscular symptoms in tryptophan deficiency. Acta Psychiatr Scand [Suppl] 237: 1–28Google Scholar
  99. Lehmann J (1973) Tryptophan malabsorption in levodopa-treated parkinsonian patients: effect of tryptophan on mental disturbances. Acta Med Scand 194: 181–189Google Scholar
  100. Lehmann J (1981) Tryptophan malabsorption in dementia: improvement in certain cases after tryptophan therapy as indicated by mental behaviour and blood analysis. Acta Psychiatr Scand 64: 123–131Google Scholar
  101. Lejoyeux M, Adès J, Rouillon F (1994) Serotonin syndrome: incidence, symptoms and treatment. CNS Drugs 2: 132–143Google Scholar
  102. Leklem JE (1971) Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am J Clin Nutr 24: 659–672Google Scholar
  103. Lewander T, Sjöstrom R (1973) Increase in plasma concentration of free tryptophan caused by probenecid in humans. Psychopharmacology 33: 81–86Google Scholar
  104. Lieberman HR, Caballero B, Finer N (1986) The composition of lunch determines afternoon plasma tryptophan ratios in humans. J Neural Transm 65: 211–217Google Scholar
  105. Love LA, Rader JI, Crofford LJ, Raybourne RB, Principato MA, Page SW, Trucksess MW, Smith MJ, Dugan EM, Turner ML, Zelazowski E, Zelazowski P, Sternberg EM (1993) Pathological and immunological effects of ingesting L-tryptophan and 1,1′-ethylidenebis(L-tryptophan) in Lewis rats. J Clin Invest 91: 804–811Google Scholar
  106. Lucca A, Lucini V, Piatti E, Ronchi P, Smeraldi E (1992) Plasma tryptophan levels and plasma tryptophan/neutral amino acids ratio in patients with mood disorder, patients with obsessive-compulsive disorder, and normal subjects. Psychiatry Res 44: 85–91Google Scholar
  107. Madara JL, Carlson S (1991) Supraphysiologic L-tryptophan elicits cytoskeletal and macromolecular permeability alterations in hamster small intestinal epithelium in vitro. J Clin Invest 87: 454–462Google Scholar
  108. Maes M, Vandewoude M, Schotte C, Martin M, D'Hondt P, Scharpe S, Blockx P (1990) The decreased availability of L-tryptophan in depressed females: clinical and biological correlates. Prog Neuropsychopharmacol Biol Psychiatry 14: 903–919Google Scholar
  109. Maestroni GJM (1993) Mini-review: the immunoneuroendocrine role of melatonin. J Pineal Res 14: 1–10Google Scholar
  110. Manabe S, Wada O (1990) Identification of carcinogenic tryptophan pyrolysis products in human bile by high-performance liquid chromatography. Environ Mol Mutagen 15: 229–235Google Scholar
  111. Matsuo S, Inoue F, Takeuchi Y, Yoshioka H, Kinugasa A, Sawada T (1995) Efficacy of tryptophan for the treatment of nonketotic hyperglycinemia: a new therapeutic approach for modulating the N-methyl-D-aspartate receptor. Pediatrics 95: 142–146Google Scholar
  112. Matthies DL, Jacobs FA (1993) Rat liver is not damaged by high dose tryptophan treatment. J Nutr 123: 852–859Google Scholar
  113. Mayeno AN, Lin F, Foote CS, Loegering DA, Ames MM, Hedberg CW, Gleich GJ (1990) Characterization of “Peak E,” a ovel amino acid associated with eosinophiliamyalgia syndrome. Science 250: 1707–1708Google Scholar
  114. McArthur JN, Dawkins PD, Smith MJH (1971a) The displacement of L-tryptophan and dipeptides from bovine serum albuminin vitro and from human plasmain vivo by antirheumatic drugs. J Pharm Pharmacol 23: 393–398Google Scholar
  115. McArthur JN, Dawkins PD, Smith MJH, Hamilton EBD (1971b) Mode of action of antirheumatic drugs. Br Med J 2: 677–679Google Scholar
  116. McGrath RE, Buckwald B, Resnick EV (1990) The effect of L-tryptophan on seasonal affective disorder. J Clin Psychiatry 51: 162–163Google Scholar
  117. McMenamy RH, Oncley JL (1958) The specific binding of L-tryptophan to serum albumin. J Biol Chem 233: 1436–1447Google Scholar
  118. McMenamy RH (1964) The binding of indole analogues to defatted human serum albumin at different chloride concentrations. J Biol Chem 239: 2835–2841Google Scholar
  119. Meier AH, Wilson JH (1983) Tryptophan feeding adversely influences pregnancy. Life Sci 32: 1193–1196Google Scholar
  120. Meltzer HY, Lowy MT (1987) The serotonin hyptothesis of depression. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 513–526Google Scholar
  121. Michelson D, Page SW, Casey R, Trucksess MW, Love LA, Milstien S, Wilson C, Massaquoi SG, Crofford LJ, Hallett M, Gold PW, Sternberg EM (1994) An eosinophilia-myalgia syndrome related disorder associated with exposure to L-5-hydroxytryptophan. J Rheumatol 21:2261–2265Google Scholar
  122. Miller EM, Nieburg HA (1974) L-Tryptophan in the treatment of levodopa induced psychiatric disorders. Dis Nerv Syst 35: 20–23Google Scholar
  123. Mizutani T, Mizutani H, Hashimoto K, Nakamura Y, Kishida M, Taniguchi H, Murata M, Kuzuhara S, Shimizu M (1991) Simultaneous development of two cases of eosinophilia-myalgia syndrome with the same lot of L-tryptophan in Japan. J Am Acad Dermatol 25: 512–517Google Scholar
  124. Moldofsky H, Lue FA (1980) The relationship of alpha and delta EEG frequencies to pain and mood in “fibrositis” patients treated with chlorpromazine and L-tryptophan. EEG Clin Neurophysiol 50: 71–80Google Scholar
  125. Moller SE (1990) Plasma neutral amino acids associated with the efficacy of antidepressant treatment: a summary. In: Richardson MA (ed) Amino acids in psychiatric disease. American Psychiatric Press, Inc., Bethesda, pp 99–129Google Scholar
  126. Morand C, Young SN, Ervin FR (1983) Clinical response of aggressive schizophrenics to oral tryptophan. Biol Psychiatry 18: 575–578Google Scholar
  127. Moroni F, Russi P, Lombardi G, Carlá V, Alesiani M, Cherici G, Moneti G (1990) Tryptophan metabolites and excitatory amino acid receptors: studies in physiology and pathology. In: Guidotti A (ed) Neurotoxicity of excitatory amino acids. Raven Press, New York, pp 203–216Google Scholar
  128. Murphy DL, Baker M, Goodwin FK, Miller H, Kotin J, Bunney WE (1974) L-Tryptophan in affective disorders: indoleamine changes and differential clinical effects. Psychopharmacologia 34: 11–20Google Scholar
  129. Müller WE, Wollert U (1975) Benzodiazepines: specific competitors for the binding of L-tryptophan to human serum albumin. Naunyn Schmiedebergs Arch Pharmacol 288: 17–27Google Scholar
  130. National Cancer Institute (1978) Bioassay of L-tryptophan for possible carcinogenicity. National Cancer Institute Carcinogenesis Technical Report Series No. 71 (DHEW Publication No. (NIH) 78-1321). US Government Printing Office, Washington, DCGoogle Scholar
  131. National Reserarch Council (1989) Recommended daily allowances. National Academy Press, Washington, DC, pp 1–285Google Scholar
  132. Oldendorf WH, Szabo J (1976) Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 230: 94–98Google Scholar
  133. Paradis MR, Breeze RG, Bayly WM, Counts DF, Laegreid WW (1991) Acute hemolytic anemia after oral administration of L-tryptophan to ponies. Am J Vet Res 52: 742–747Google Scholar
  134. Pfefferkorn ER, Rebhun S, Eckel M (1986) Characterization of an indoleamine 2,3-dioxygenase induced by gamma-interferon in cultured human fibroblasts. J Interferon Res 6: 267–279Google Scholar
  135. Philen RM, Hill RH, Flanders WD, Caudill SP, Needham L, Sewell L, Sampson EJ, Falk H, Kilbourne EM (1993) Tryptophan contaminants associated with eosinophiliamyalgia syndrome. Am J Epidemiol 138: 154–159Google Scholar
  136. Rabey JM, Vardi J, Askenazi JJ, Streifler M (1977) L-Tryptophan administration in L-dopa-induced hallucinations in elderly parkinsonian patients. Gerontology 23: 438–444Google Scholar
  137. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12: 151–180Google Scholar
  138. Rosenberg LE, Scriver CR (1974) Disorders of amino acid metabolism. In: Bondy PK, Rosenberg LE (eds) Duncan's diseases of metabolism: genetics and metabolism. W.B. Saunders Company, Philadelphia, pp 465–633Google Scholar
  139. Rothschild MA, Oratz M, Mongelli J, Schreiber SS (1971) Alcohol-induced depression of albumin synthesis: reversal by tryptophan. J Clin Invest 50: 1812–1818Google Scholar
  140. Sainio EL, Sainio P (1990) Comparison of the effects of nicotinic acid and tryptophan on tryptophan 2,3-dioxygenase in acute and chronic studies. Toxicol Appl Pharmacol 102: 251–258Google Scholar
  141. Sainio EL, Närvänen S, Sainio P, Tuohimaa P (1991) Distribution of tryptophan in normal and glucose loaded mice. Amino Acids 1: 160Google Scholar
  142. Sato F, Shimooka H, Sakakibara M, Kawase Y (1992) Effects of metyrapone and L-tryptophan administration on eosinophils in peripheral blood of mouse. Toxicol Lett 62: 323–324Google Scholar
  143. Sebrell WH (1981) History of pellagra. Federation Proc 40: 1520–1522Google Scholar
  144. Segall PE, Timiras PS (1983) Low tryptophan diets delay reproductive aging. Mech Ageing Dev 23: 245–252Google Scholar
  145. Segura R, Ventura JL (1988) Effect of L-tryptophan supplementation on exercise performance. Int J Sports Med 9: 301–305Google Scholar
  146. Seltzer S, Dewart D, Pollack RL, Jackson EJ (1983) The effects of dietary tryptophan on chronic maxillofacial pain and experimental pain tolerance. J Psychiat Res 17: 181–185Google Scholar
  147. Shishikura T, Tsuchiya T, Sato F, Oguro K, Ebisawa H (1991) Eosinophilia caused by administration of L-tryptophan to animals with adrenal dysfunction. Toxicol Lett 58: 315–321Google Scholar
  148. Shpeen SE, Morse DR, Furst ML (1984) The effect of tryptophan on postoperative endodontic pain. Oral Surg 58: 446–449Google Scholar
  149. Sidransky H, Sarma DSR, Bongiorno M, Verney E (1968) Effect of dietary tryptophan on hepatic polyribosomes and protein synthesis in fasted mice. J Biol Chem 243: 1123–1132Google Scholar
  150. Sidransky H, Verney E, Kurl RN, Razavi T (1988) Effect of tryptophan on toxic cirrhosis induced by intermittent carbon tetrachloride intoxication in the rat. Exp Mol Pathol 49: 102–110Google Scholar
  151. Silver RM, Heyes MP, Maize JC, Quearry B, Vionnetfuasset M, Sternberg EM (1990) Scleroderma, fascitis, and eosinophilia associated with the ingestion of tryptophan. N Engl J Med 322: 874–881Google Scholar
  152. Sjoerdsma A, Weissbach H, Udenfriend S (1956) A clinical, physiologic and biochemical study of patients with malignant carcinoid (argentaffinoma). Am J Med 20: 520–532Google Scholar
  153. Smith MJ, Mazzola EP, Farrell TJ, Sphon JA, Page SW, Asley D, Sirimanne SR, Hill RH, Needham LL (1991) 1,1′-Ethylidenebis (L-tryptophan), structure determination of contaminant “97” — implicated in the eosinophilia-myalgia syndrome (EMS). Tet Letters 32: 991–994Google Scholar
  154. Sofic E, Riederer P, Schmidt B, Fritze J, Kollegger H, Dierks T, Beckmann H (1992) Biogenic amines and metabolites in CSF from patients with HIV infection. Biogen Amines 8: 293–298Google Scholar
  155. Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9: 319–364Google Scholar
  156. Souci SW, Fachmann W, Kraut H (1986) Food composition and nutrition tables 1986/1987. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  157. Sourkes TL (1983) Toxicology of monoamine precursors. In: van Praag HM, Mendlewicz J (eds) Management of depressions with monoamine precursors: Advances in biological psychiatry, Vol 10. S. Karger, Basel, pp 160–175Google Scholar
  158. Spano PF, Szyszka K, Pozza G, Sirtori CR (1974) Influence of clofibrate on serum tryptophan in man. Res Exp Med 163: 265–269Google Scholar
  159. Spoont MR (1992) Modulatory role of serotonin in neural information processing: implications for human psychopathology. Psychol Bull 112: 330–350Google Scholar
  160. Steiner W, Fontaine R (1986) Toxic reaction following the combined administration of fluoxetine and L-tryptophan: five case reports. Biol Psychiatry 21: 1067–1071Google Scholar
  161. Stensrud T, Ingjer F, Holm H, Stromme SB (1992) L-Tryptophan supplementation does not improve running performance. Int J Sports Med 13: 481–485Google Scholar
  162. Sternbach H (1991) The serotonin syndrome. Am J Psychiatry 148: 705–713Google Scholar
  163. Sternbach RA, Janowsky DS, Huey LY, Segal DS (1976) Effects of altering brain serotonin activity on human chronic pain. In: Bonica JJ, Albe-Fessard D (eds) Advances in pain research and therapy. Raven Press, New York, pp 601–606Google Scholar
  164. Sternberg EM, Van Woert HM, Young SN, Magnussen L, Baker H, Gauthier S, Osterland CK (1980) Development of a scleroderma-like illness during L-5HTP-carbidopa therapy. N Engl J Med 303: 782–787Google Scholar
  165. Strain GW, Strain JJ, Zumoff B (1985) L-Tryptophan does not increase weight loss in carbohydrate-craving obese subjects. Int J Obes 9: 375–380Google Scholar
  166. Sweet RD, McDowell FH, Feigenson JS, Loranger AW, Goodell H (1976) Mental symptoms in Parkinson's disease during chronic treatment with levodopa. Neurology 26: 305–310Google Scholar
  167. Swygert LA, Maes EF, Sewell LE, Miller L, Falk H, Kilbourne EM (1990) Eosinophiliamyalgia syndrome: results of a national survey. J Am Med Assoc 264: 1698–1703Google Scholar
  168. Taylor MW, Feng G (1991) Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5: 2516–2522Google Scholar
  169. Teff KL, Young SN, Blundell JE (1989a) The effect of protein or carbohydrate breakfasts on subsequent plasma amino acid levels, satiety and nutrient selection in normal males. Pharmacol Biochem Behav 34: 829–837Google Scholar
  170. Teff KL, Young SN, Marchand L, Botez MI (1989b) Acute effect of protein and carbohydrate breakfasts on human cerebrospinal fluid monoamine precursor and metabolite levels. J Neurochem 52: 235–241Google Scholar
  171. Thomson J, Rankin H, Ashcroft GW, Yates CM, McQueen JK, Cummings SW (1982) The treatment of depression in general practice: a comparison of L-tryptophan, amitriptyline, and a combination of L-tryptophan and amitriptyline with placebo. Psychol Med 12: 741–751Google Scholar
  172. Trulson ME, Sampson HW (1986) Ultrastructural changes of the liver following L-tryptophan ingestion in rats. J Nutr 116: 1109–1115Google Scholar
  173. Virkkunen M, DeJong J, Bartko J, Goodwin FK, Linnoila M (1989) Relationships of psychobiological variables to recidivism in violent offenders and impulsive fire setters: a followup study. Arch Gen Psychiatry 46: 601–603Google Scholar
  174. Volavka J, Crowner M, Brizer D, Convit A, van Praag HM, Suckow RF (1990) Tryptophan treatment of aggressive psychiatric inpatients. Biol Psychiatry 28: 728–732Google Scholar
  175. Wilkins K (1990) Eosinophilia-myalgia syndrome. Can Med Assoc J 142: 1265–1266Google Scholar
  176. Wolf H (1974) Studies on tryptophan metabolism in man. Scand J Clin Lab Invest [Suppl] 136: 1–186Google Scholar
  177. World Health Organization (1992) Toxic oil syndrome: current knowledge and future perspectives. WHO Regional Publications, European Series, No. 42. World Health Organization, CopenhagenGoogle Scholar
  178. Wurtman JJ, Wurtman RJ, Growdon JH, Henry P, Lipscomb A, Zeisel SH (1981a) Carbohydrate craving in obese people: suppression by treatments affecting serotoninergic transmission. Int J Eating Dis 1: 2–15Google Scholar
  179. Wurtman RJ, Hefti F, Melamed E (1981b) Precursor control of neurotransmitter synthesis. Pharmacol Rev 32: 315–335Google Scholar
  180. Xue-Cun C, Tai-An Y, Xiu-Zhen T, Yu-Fang H, Xiao-Yue Y, Shu-Rong L, Huai-Cheng Y (1983) Opaque-2 maize in the prevention and treatment of pellagra. Nutr Res 3: 171–180Google Scholar
  181. Young SN, Sourkes TL (1977) Tryptophan in the central nervous system: regulation and significance. In: Agranoff BW, Aprison MH (eds) Advances in neurochemistry, vol 2. Plenum Press, New York, pp 133–191Google Scholar
  182. Young SN, Gauthier S (1981) Effect of tryptophan administration on tryptophan, 5-hydroxyindoleacetic acid, and indoleacetic acid in human lumbar and cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry 44: 323–327Google Scholar
  183. Young SN (1986) The clinical psychopharmacology of tryptophan. In: Wurtman RJ, Wurtman JJ (eds) Nutrition and the brain, vol 7. Food constituents affecting normal and abnormal behaviors. Raven Press, New York, pp 49–88Google Scholar
  184. Young SN (1990) Factors influencing the therapeutic effect of tryptophan in affective disorders, sleep, aggression, and pain. In: Richardson MA (ed) Amino acids in psychiatric disease. American Psychiatric Press, Inc., Washington, DC, pp 51–75Google Scholar
  185. Young SN (1991) Use of amine precursors in combination with other antidepressant treatments: a review. J Psychiatr Neurosci 16: 241–246Google Scholar
  186. Yuwiler A, Geller E (1973) Rat liver tryptophan oxygenase induced by neonatal corticoid administration and its effect on brain serotonin. Enzyme 15: 161–168Google Scholar
  187. Yuwiler A, Oldendorf WH, Geller E, Braun L (1977) Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J Neurochem 28: 1015–1023Google Scholar
  188. Zigman S (1984) The role of tryptophan oxidation in ocular tissue damage. In: Schlossberger HG, Kochen W, Linzen B, Steinhart H (eds) Progress in tryptophan and serotonin research. Walter de Gruyter, Berlin, pp 449–467Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • E. -L. Sainio
    • 1
    • 4
  • K. Pulkki
    • 2
  • S. N. Young
    • 3
  1. 1.Department of Pharmacology and ToxicologyUniversity of KuopioKuopioFinland
  2. 2.Central LaboratoryTurku University Central HospitalTurkuFinland
  3. 3.Department of Psychiatry and the School of Dietetics and Human NutritionMcGill UniversityMontréalCanada
  4. 4.National Consumer AdministrationHelsinkiFinland

Personalised recommendations