Letters in Mathematical Physics

, Volume 30, Issue 3, pp 189–206 | Cite as

The blob algebra and the periodic Temperley-Lieb algebra

  • Paul Martin
  • Hubert Saleur


We determine the structure of two variations on the Temperley-Lieb algebra, both used for dealing with special kinds of boundary conditions in statistical mechanics models. The first is a new algebra, the ‘blob’ algebra. We determine both the generic and all the exceptional structures for this two parameter algebra. The second is the periodic Temperley-Lieb algebra. The generic structure and part of the exceptional structure of this algebra have already been studied. We complete the analysis using results from the study of the blob algebra.

Mathematics Subject Classifications (1991)

16D90 81R05 81R10 82B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albertini, G., Dasmahapatra, S. and McCoy, B. M.,Internat. J. Modern Phys. A 7 Suppl. 1 A, 1 (1993); Alcaraz, F., Grimm, U and Rittenberg, V.,Nuclear Phys. B 316, 735 (1989).Google Scholar
  2. 2.
    Baxter, R. J.,Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982.Google Scholar
  3. 3.
    Pasquier, V. and Saleur, H.,Nuclear Phys. 330, 523 (1990).Google Scholar
  4. 4.
    Levy, D., The structure of the affine Hecke, quotient underlying the translation invariantXXZ chain, Tel-Aviv preprint TAUP 1986–92.Google Scholar
  5. 5.
    Levy, D.,Phys. Rev. Lett. 67, 1971 (1991).Google Scholar
  6. 6.
    Martin, P. P. and Saleur, H.,Comm. Math. Phys. 158, 155 (1993).Google Scholar
  7. 7.
    Belavin, A., Polyakov, A. and Zamolodchikov, Al. B.,Nuclear Phys. B 241, 333 (1984).Google Scholar
  8. 8.
    Temperley, H. N. V. and Lieb, E.,Proc. Roy Soc. London Ser. A 322 25 (1971).Google Scholar
  9. 9.
    Penrose, R., in (ed), T. Bastin,Quantum Theory and Beyond, Cambridge Univ Press, Cambridge, 1971.Google Scholar
  10. 10.
    Westbury, B. W., PhD Thesis Manchester University, 1990 and unpublished 1991 notes ‘On the Temperley-Lieb algebras’.Google Scholar
  11. 11.
    James, G. D. and Kerber, A.,The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, Mass, 1981.Google Scholar
  12. 12.
    Green, J. A.,Polynomial Representations of Gl n, Lecture Notes in Math. 830, Springer-Verlag, Berlin, 1980.Google Scholar
  13. 13.
    Cline, E., Parshal, B. and Scott, L.,J. Reine Angew. Math,391, 85 (1988).Google Scholar
  14. 14.
    Martin, P. P., Non-planar statistical mechanics-the partition algebra construction, Yale preprint YCTP-P34-92, to appear inJ.K.T.R. Google Scholar
  15. 15.
    Martin, P. P.,Potts Models and Related Problems in Statistical Mechanics, World Scientific, Singapore, 1991.Google Scholar
  16. 16.
    Cohn, P. M.,Algebra, vol. 2, Wiley, London, 1989.Google Scholar
  17. 17.
    Pasquier, V.,Nuclear Phys. B 285, 162 (1987);J. Phys., Am 20, L1229 (1987).Google Scholar
  18. 18.
    Andrews, G. E., Baxter, R. J., and Forrester, P. J.,J. Stat. Phys. 35, 193 (1984).Google Scholar
  19. 19.
    Di Francesco, P., Saleur, H. and Zuber, J. B.,Nuclear Phys. 285, 454 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Paul Martin
    • 1
  • Hubert Saleur
    • 2
  1. 1.Department of MathematicsCity UniversityLondonU.K.
  2. 2.Department of Mathematics and Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations