Soviet Powder Metallurgy and Metal Ceramics

, Volume 29, Issue 9, pp 673–683 | Cite as

Production of atomized metal and alloy powders by the rotating electrode process

  • M. Zdujić
  • D. Uskoković
Theory, Production Technology, and Properties of Powders and Fibers


Atomize Metal Alloy Powder Electrode Process Rotate Electrode Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Abkowitz, “A new way to make titanium alloys and composites,” Met. Progr.,89, 62–65 (1966).Google Scholar
  2. 2.
    S. Abkowitz, “Micro-quenched age-formed titanium alloys and titanium alloy composites,” J. Met.,18, 458–464 (1966).Google Scholar
  3. 3.
    A. R. Kaufman, Method and Apparatus for Making Powders, U.S. Pat. No. 3099041 (1963).Google Scholar
  4. 4.
    Yu. V. Yultunin, S. G. Glazunov, and O. P. Solonina, “Centrifugal method of manufacture of metal granules and prospects of its application for the production of heat-resisting titanium alloys,” Tekhnol. Legkikh Splavov, No. 2, 120–126 (1970).Google Scholar
  5. 5.
    S. G. Glazunov, Device for Producing Fine Powder of Liquid Metal, U.S. Pat. No. 3752610 (1973).Google Scholar
  6. 6.
    A. R. Kaufman, Production of Pure, Spherical Powders, U.S. Pat. No. 3802816 (1974).Google Scholar
  7. 7.
    E. J. Kosinski, “The mechanical properties of titanium P/M parts produced from superclean powders,” in: Progress in Powder Metallurgy, Proceedings of a National Powder Metallurgy Conference, Vol. 38 (1982), pp. 491–501.Google Scholar
  8. 8.
    W. B. Tuffin, “Titanium alloy powders,” Precision Met.,26, 31–35 (1968).Google Scholar
  9. 9.
    A. Cyunczyk and J. Ostrowski, “The properties of steel powders prepared by atomization in an electric arc,” Powder Metall. Int.,8, 22–24 (1976).Google Scholar
  10. 10.
    B. Champagne and R. Angers, “Fabrication of powders by the rotating electrode process,” J. Powder Metall. Powder Technol.,16, 359–366 (1980).Google Scholar
  11. 11.
    M. Zdujić, M. Sokić, V. Petrović, and D. Uskokovic. “The study of properties and cooling rates of steel powders obtained by rotating electrode process,” Powder Metall. Int.,18, 275–277 and 325–329 (1986).Google Scholar
  12. 12.
    S. G. Glazunov and V. G. Govorov, “VTU-2 installation for the manufacture of spherical powders (granules) from chemically active metals and alloys,” Poroshk. Metall., No. 9, 84–89 (1976).Google Scholar
  13. 13.
    P. Loewenstein, “Superclean superalloy powders,” Met. Powder Rpt.,36, 59–64 (1981).Google Scholar
  14. 14.
    P. Loewenstein, “Specialty powders by the rotating electrode process,” National Powder Metallurgy Conference Proceedings (eds. J. M. Capus and D. L. Dyke), Philadelphia (1981), pp. 9–21.Google Scholar
  15. 15.
    B. Williams, “Nuclear metals aims high with aerospace metal powders,” Met. Powder Rept.,39, 527–529 (1984).Google Scholar
  16. 16.
    H. Jaeger, J. Stamberger, F. Heinemann, and B. Hribernik, “Powder particle formation phenomena observed in PREP and gas atomization,” in: Horizons of Powder Metallurgy, Proceedings of an International Powder Metallurgy Conference and Exhibition “The Future of Powder Metallurgy, P/M 86,” (eds. W. A. Kaysser and W. J. Huppman), Düsseldorf (1986), pp. 65–70.Google Scholar
  17. 17.
    J. Devillard and C. Clozet, “Elaboration des poudres de grande purité par pulverization d'une électrode sous BE,” 2-em CISFFE, 413–420 (1978).Google Scholar
  18. 18.
    B. Williams, “Coatings and PM research at CEN Grenoble,” Met. Powder Rept.,40, 420–423 (1985).Google Scholar
  19. 19.
    R. Mahs and H. Sibum, “Powder metallurgical production of titanium alloy TiA16V4 parts,” Powder Metall. Int.,16, 163–166 (1984).Google Scholar
  20. 20.
    R. Sundaresan, R. Seshadri, V. R. Krishnan, and A. G. Raghuram, “Production of titanium alloy powders through the rotating rod process,” 10th Plansee Conference Proceedings, Vol. 2, Tirol (1981), pp. 385–409.Google Scholar
  21. 21.
    J. Willbrand, W. Jablonski, and H. Rewe, “Production and morphology of KRZ-Ti6A14V powder,” 10th Plansee Conference Proceedings, Vol. 16, Tirol (1981), pp. 71–74.Google Scholar
  22. 22.
    D. G. Konizer, K. W. Walters, E. L. Heiser, and H. L. Fraer, “Rapidly solidified prealloyed powders by laser spin atomization,” Metall. Trans.,15B, 149–153 (1984).Google Scholar
  23. 23.
    T. C. Peng, S. M. L. Sastry, and J. E. O. Neal, “Laser-melting: Spin-atomization method for the production of titanium alloy powders,” Metall. Trans.,16A, 1897–1900 (1985).Google Scholar
  24. 24.
    D. J. Hodkin, P. W. Sutcliffe, P. G. Morton, and L. E. Russell, “Centrifucal shot casting: A new atomization process for the preparation of high-purity alloy powders,” Powder Metall.,16, 277–313 (1973).Google Scholar
  25. 25.
    H. Stephan, H. Aichert, and J. Heimerl, Method for the Production of High-Purity Metal Powders by Means of Electron Beam Heating, U.S. Pat. No. 4218410 (1980).Google Scholar
  26. 26.
    W. Pietch, H. Stephan, A. Feurstein, et al., “Atomization of reactive and refractory metals by the electron beam rotating disc process,” Powder Metall. Inst.,15, 77–83 (1983).Google Scholar
  27. 27.
    V. A. Kozlov and V. G. Golubkov, “Atomization of melts by a rotating disk with a solidified deposit,” Poroshk. Metall., No. 3, 1–5 (1981).Google Scholar
  28. 28.
    A. G. Tsipunov, Yu. F. Ternovoi, S. B. Kuratchenko, and O. M. Kuimova, “Experimental investigation of the process of powder manufacture by centrifugal atomization,” Poroshk. Metall., No. 10, 13–18 (1983).Google Scholar
  29. 29.
    V. L. Girshov, Yu. N. Sigachev, E. D. Orlov, and Yu. L. Sapozhnikov, “Centrifugal atomization of molten metals with particle cooling in a liquid medium,” Poroshk. Metall., No. 2, 1–6 (1985).Google Scholar
  30. 30.
    R. J. Patterson, A. R. Cox, and E. C. Van Reuth, “Rapid solidification rate processing and application to turbine engine materials,” J. Met.,32, 34–39 (1980).Google Scholar
  31. 31.
    W. H. Walton and W. C. Prewett, “The production of sprays and mists of uniform drop size by means of spinning disc type sprayers,” Proc. Phys. Soc.,B62, 341–350 (1949).Google Scholar
  32. 32.
    J. O. Hinze and H. Milborn, “Atomization of liquids by means of a rotating cup,” J. Appl. Mech.,17, 145–153 (1950).Google Scholar
  33. 33.
    S. J. Friedman, F. A. Gluckert, and W. R. Marshall, “Centrifugal disk atomization,” Chem. Eng. Progr.,48, 181–191 (1952).Google Scholar
  34. 34.
    B. P. Fraser and P. Eiseklam, “Liquid atomization and the drop size of sprays,” Trans. Inst. Chem. Eng.,34, 294–319 (1956).Google Scholar
  35. 35.
    R. P. Fraser, N. Dombrowski, and J. H. Routley, “The filming of liquids by spinning cups,” Chem. Eng. Sci.,18, 323–337 (1963).Google Scholar
  36. 36.
    P. Bär, “Uber die physikalischen Grundlagen der Zerstäubungstrocknung,” Doctoral Dissertation, Technical College, Karlsruhe (1935).Google Scholar
  37. 37.
    B. Champagne and R. Angers, “REP atomization mechanisms,” Powder Metall. Int.,16, 125–128 (1984).Google Scholar
  38. 38.
    B. Champagne, R. Angers, and M. Fiset, “Characteristics of powders produced by the rotating electrode process,” Met. Powder Rept.,39, 267–270 (1984).Google Scholar
  39. 39.
    V. T. Musienko, “Some laws of granule formation during the centrifugal atomization of a rotating blank,” Poroshk, Metall., No. 8, 1–7 (1979).Google Scholar
  40. 40.
    J. M. Wentzell, “Particle size reduction from the spinning disk atomizer,” Powder Metall. Int.,18, 16 (1986).Google Scholar
  41. 41.
    H. Schmitt, “Mathematical-physical consideration regarding the production of metal powders for powder metallurgy,” Powder Metall. Int.,11, 68–71 (1979).Google Scholar
  42. 42.
    B. Champagne and R. Angers,. “Size distribution of powders atomized by the rotating electrode process,” Mod. Develop. Powder Metall.,12, 83–104 (1980).Google Scholar
  43. 43.
    B. See and G. H. Johnston, “Interaction between nitrogen jets and liquid lead and tin streams,” Powder Technol.,21, 119–133 (1978).Google Scholar
  44. 44.
    H. Lubenska, “Correlation of spray ring data for gas atomization of liquid metals,” J. Met.,22, 45–49 (1970).Google Scholar
  45. 45.
    S. Small and T. J. Bruce, “The comparison of characteristics of water and inert gas atomized powders,” Inst. J. Powder Metall.,4, 7–17 (1968).Google Scholar
  46. 46.
    J. J. Dunkley, “The production of metal powders by water atomization,” Powder Metall. Int.,10 (1978).Google Scholar
  47. 47.
    R. J. Grandzol and J. A. Tallmadge, “Water jet atomization of molten steel,” Am. Inst. Chem. Eng. J.,19, 1149–1158 (1973).Google Scholar
  48. 48.
    C. E. Lapple and C. B. Shepherd, “Calculation of particle trajectories,” Ind. Eng. Chem.,32, 605–617 (1940).Google Scholar
  49. 49.
    P. N. Rowe, K. T. Claxton, and J. B. Lewis, “Heat and mass transfer from a single sphere in an extensive flowing fluid,” Trans. Inst. Chem. Eng.,43, T14-T31 (1965).Google Scholar
  50. 50.
    P. W. Sutcliffe and P. H. Morton, “Titanium powder production by the Harwell centrifugal shot casting process,” AGARD Conference Proceedings (ed. Advisory Group for Aerospace Research and Development), Neuilly sur Seine (1976), pp. SC3-1–SC3-4.Google Scholar
  51. 51.
    O. S. Nichiporenko, A. G. Tsipunov, and Yu. F. Ternovoi, “Analysis of the particle shape formation process in the centrifugal atomization of a melt jet,” Poroshk. Metall., No. 1, 1–6 (1984).Google Scholar
  52. 52.
    M. Zdujić and D. Uskoković, “Theoretical analysis of metal particle cooling in the rotating electrode process,” Paper to the Sixth World Round Table Conference on Sintering, Herceg-Novi (1985).Google Scholar
  53. 53.
    M. Zdujić, V. Petrović, and D. Uskoković, “Dobijanja prahova legure Ti-5Al centrifugalnim rasprsivanjem postupkom rotirajuće elektrode,” in: Savremeni Neorganski Materiajali '86, IX Jugoslovensko Savetovanje o Neorganskim Materijalima, Jugoslovenski Savez za ETAN, Belgrade (1986), pp. 15–22.Google Scholar
  54. 54.
    M. Zdujić, V. Petrović, and D. Uskoković, “Osobine prahova legura titana i aluminijuma debijenih centrifugalnim rasprsivanjem postupkom rotirajuće elektrode,” in: Materijali '86, Teorija i Praksa Sinterovanja, Zlatibor (1986).Google Scholar
  55. 55.
    M. Zdujić, V. Petrović and D. Uskoković, “Preparation of moybdenum powders by rotating electrode process,” Paper to the Sixth World Round Table Conference on Sintering, Herceg-Novi (1985).Google Scholar
  56. 56.
    M. Zdujić, Investigation of the Production of Metal Powders by Centrifugal Atomization [in Serbian], Belgrade (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • M. Zdujić
    • 1
  • D. Uskoković
    • 1
  1. 1.Institute of Technical SciencesSerbian Academy of Sciences and ArtsBelgrade

Personalised recommendations