Advertisement

Internal instability in a Reissner-Nordström black hole

  • Michael Simpson
  • Roger Penrose
Article

Abstract

The question of the effect of asynumetries in gravitational collapse is investigated by considerations of test electromagnetic fields in an extended Reissner-Nordström background. It is found, with ths aid of computer calculations, that instabilities in the test field arise at the inner (Cauchy or anti-event) horizon, though not at the ouier (event) horizon. Thus it is reasonable to infer that in the full coupled Einstein-Maxwell theory the inner horizon will not survive as a non-singular bypersurface when asymmetric perturbations are present, but will instead become a space-time curvature singularity.

Keywords

Black Hole Field Theory Elementary Particle Quantum Field Theory Electromagnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer, R. H. and Lindquist, R. W. (1967).Journal of Mathenatical Physics,8, 265.Google Scholar
  2. Carter, B. (1968),Physical Review,174, 1559.Google Scholar
  3. Cartes, B. (1971).Physical Review Letters,26, 331.Google Scholar
  4. Hawking, S. W. (1966).Proceedings of the Royal Society, A,294, 511; (1967) 300, 187.Google Scholar
  5. Hawking, S. W. (1972).Communications in Mathematical Physics,25, 152.Google Scholar
  6. Hawking, S. W. and Penrose, R. (1970).Proceedings of the Royal Society, A,314, 529.Google Scholar
  7. Israel, W. (1967).Physical Review,164, 1776.Google Scholar
  8. Israel, W. (1968).Communications Mathematical Physics,8, 245.Google Scholar
  9. Kerr, R. P. (1963).Physical Review Letters,11, 237.Google Scholar
  10. Newman, E. T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence R. (1965).Journal of Mathematical Physics,6, 918.Google Scholar
  11. Newman, E. T. and Penrose, R. (1962).Journal of Mathematical Physics,3, 566.Google Scholar
  12. Newman, E. T. and Penrose, R. (1968).Proceedings of the Royal Society, A,305. 175.Google Scholar
  13. Penrose, R. (1967). ‘An Analysis of the Structure of Space-Time’ (Adams Prize Essay, Cambridge). Princeton.Google Scholar
  14. Penrose, R. (1968). ‘Structurc of Space-Time’, inBattelle Recontres (Ed, C. M. De Witt and J. A. Wheeler). Benjamin, New York.Google Scholar
  15. Penrose, R. (1969a).Rivista del nuovo cimento, Serie 1,1, Numero Speciale, 252.Google Scholar
  16. Penrose, R. (1969b).Contemporary Physics,1, 545 (International Atomic Energy Agency. Vienna.Google Scholar
  17. Smith, G. D. (1969).Numerical Solution of Partial Differential Equations. Oxford University Press.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1973

Authors and Affiliations

  • Michael Simpson
    • 1
  • Roger Penrose
    • 1
  1. 1.Department of MathematicsBirkbeck CollegeLondon

Personalised recommendations