Fertilizer research

, Volume 45, Issue 2, pp 91–100 | Cite as

Dynamics of phosphate in soils. An isotopic outlook

  • J. C. Fardeau


The quantities of phosphorus leached or carried away by erosion are always low in comparison with the quantity of P taken by plants. Therefore, without P application, dynamics of P in soil-plant systems depends mainly on plant P uptake from available soil P. This paper concerns mainly the description and the analysis of available soil phosphate. Available soil P is generally determined using extraction methods. It was shown, using isotopic exchange, method developed in soil-solution mixtures in steady-state, that available soil P could be described as a system with many pools. For agronomic purposes, available soil P was described with five pools of phosphate ions which have increasing rates of transfer from soil particles to soil solution. The most important is a pool which contains only directly available phosphate ions. These phosphate ions leave the solid phase of the soil to enter in the soil solution in a time shorter than 15 seconds: this time is the minimum time required to realize its determination. The intensity, quantity and capacity factors recommended to describe the available soil P are derived from experimental data characterizing this pool. The four other pools all are directly branched on this central pool. They are characterized by the quantities of P they contain and by the time required for the phosphate ions they contain to enter into the soil-solution. Effects of continuous P uptakes and of various P applications on these compartments were described. It was shown that: (i) continuous cropping without P return decreases ineluctably the intensity and quantity factors, and consequently soil P fertility (ii) applications of P quantities higher than P outputs with crops do not always increase the intensity and quantity factors, and consequently available soil P and its availability. The absolute values of the increase depends on: the type of P fertilizer or crop residues applied on the soil, on the level of soil P fertility before P application and on the fixing capacity of the soil for phosphate ions.

Key words

bioavailable P compartments isotopic exchange manure P fertilizers P fixation P release residual wastes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aslyng HC (1964) Phosphate potential and phosphate status of soils. Acta Agric Scand 14: 261–285Google Scholar
  2. Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley Interscience, John Wiley & Sons, New York, USAGoogle Scholar
  3. Barrow NJ (1980) Evaluation and utilization of residual phosphorus in soils. In: Khasawneh FE, Sample EC & Kamprath EJ (eds) The Role of Phosphorus in Agriculture pp, 333–361. American Society of Agronomy, Madison, Wisc, USAGoogle Scholar
  4. Barrow NJ (1991) Testing a mechanistic model. XI. The effects of time and of level of application on isotopically exchangeable phosphate. J Soil Sci 42: 277–288Google Scholar
  5. Barrow NJ & Shaw TC 1975 The slow reaction between soil and anions: 3. The effect of time and temperature on the decrease in isotopically exchangeable phosphate. Soil Sci 119: 190–197Google Scholar
  6. Blair GJ, Till AR & Smith RCG (1977) The phosphorus cycle. What are the sensitive aeras? In: Blair GJ (ed) Prospects for improving the efficiency of phosphorus Utilization. Rev Rural Sci 3: 9–19Google Scholar
  7. Bolland MDA (1992) The phosphorus requirement of different crop species compared with wheat on lateritic soils. Fert Res 32: 27–36Google Scholar
  8. Bolland MDA & Gilkes RK (1992) Evaluation of the Bray 1, calcium acetate lactate (CAL), Truog and Colwell soil tests as predictors of triticale grain production on soil fertilized with superphosphate and rock phosphate. Fert Res 31: 363–372Google Scholar
  9. Boniface R & Trocmé S (1988) Enseignements fournis par des essais de longue durée sur la fumure phosphatée et potassique. 2. Essais sur la fumure phosphatée. In: Gachon L (ed) Phosphore et Potassium dans les relation sol-plante: conséquences sur la fertilisation. pp 279–402. INRA, Paris, FranceGoogle Scholar
  10. Dalal RC & Hallsworth EG (1977) Measurment of isotopic exchangeable soil phosphorus and inter-relationship among quantity, intensity and capacity factors. Soil Sci Soc Am J 41: 81–86Google Scholar
  11. Dean LA Nelson WL Mackenzie AJ, Armiger WH & Hill WL (1947) Application of radioactive tracer technique to studies of phosphatic fertilizer utilization by crops: Greenhouse experiments. Soil Sci Soc Am Proc 12: 107–112Google Scholar
  12. Fardeau JC (1992) La fertilité des sols et son entretien. In: Brun Bellut J & Morel JL (eds) Agriculture, Environnement, Qualité. pp 51–73. ENSAIA-INPL, Nancy, FranceGoogle Scholar
  13. Fardeau JC (1993) Le phosphore assimilable des sols: sa représentation par un modéle fonctionnel á plusieurs compartiments. Agronomie 13: 317–331Google Scholar
  14. Fardeau JC & Frossard E (1992) Processus de transformations du phosphore dans les sols de I'Afrique de I'Ouest semi-aride: application au phosphore assimilable. In: Tiessen H & Frossard E (eds) Phosphorus Cycles in terrestrial and aquatic Ecosystems. Regional workshop 4: Africa, pp 108–128. Saskatoon University, Saskatoon, CanadaGoogle Scholar
  15. Fardeau JC & Jappé J (1976) Nouvelle méthode de détermination du phosphore assimilable par les plantes. CR Acad Sci Paris, Série D 282: 1137–1140Google Scholar
  16. Fardeau JC, Chabouis C & Hétier JM (197T) Méthodes des cinétiques de dilution isotopique des ions PO4 et K+: applicationá l'analyse des modifications defertilité des essaisde trés longue durée. Bull Assoc Fr Etude Sol 2: 111–122Google Scholar
  17. Fardeau JC, Morel C & Boniface R (1988) Pourquoi choisir la méthode Olsen pour estimer le phosphore “assimilable” des sols. Agronomie 8: 577–584Google Scholar
  18. Fardeau JC, Morel C & Boniface R (1991) Cinétiques de transfert des ions phosphates du sol vers la solution du sol. Agronomie 11: 787–797Google Scholar
  19. Fardeau JC, Morel C & Oberson A (1993) Phosphore, matiére organiqueset eutrophisation des écosystémes. In: Decroux J & Ignazi JC (eds) Matiéres Organiques et Agricultures, pp 125–138. NDT, Blois, FranceGoogle Scholar
  20. Fardeau JC, Poss R & Saragoni H 1992 Effect of potassium fertilization on K-cycling in different agrosystems. In: Potassium in Ecosystems, pp 59–78. International Potash Institute, Basel, SwitzerlandGoogle Scholar
  21. Feller CW 1966 An Introduction to Probability Theory and its Application, Vol II. John Wiley & Sons, New York, USAGoogle Scholar
  22. Frissel MJ (1978) Cycling of Mineral Nutrients in Agricultural Ecosystems. Elsevier, Amsterdam, the NetherlandsGoogle Scholar
  23. Frossard E, Brossard M, Hedley MJ & Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus in global Environment, pp 107–137. John Wiley & Sons Ltd, New York, USAGoogle Scholar
  24. Frossard E, Fardeau JC Brossard M & Morel JL (1994) Soil isotopically exchangeable phosphorus: a comparison between E and L values. Soil Sci Soc Am J 58: 846–851Google Scholar
  25. Frossard E, Fardeau JC, Ognalaga M & Morel JL (1992a) Influences of agricultural practice, soil properties and parent material on the phosphate bufering capacity of cultivated soils developed under a temperate climate. Eur J Agron 1: 45–50Google Scholar
  26. Frossard E, Feller JC, Tiessen H, Stewart JWB, Fardeau JC & Morel JL (1992b) Can an isotopic method allow for the determination of phosphate fixing capacity of soils? Commun Soil Sci Plant Anal 24: 267–377Google Scholar
  27. Gianinazzi-Pearson V, Fardeau JC, Asimi S & Gianinazzi S (1981) Source af additional phosphorus adsorbed from soil by vesiculararbuscular mycorrhizal soybeans. Physiol Vég 19: 33–43Google Scholar
  28. Khasawneh FE & Doll EC (1978) The use of phosphate rock for direct application to soils. Adv Agron 30: 159–206Google Scholar
  29. Larsen S (1952) The use of32P in studies on the uptake of phosphorus by plants. Plant Soil 4: 1–10Google Scholar
  30. Lubchenco J & 16al. (1991) The sustainable biosphere initiative: an ecological research agenda. Ecology 72: 371–412Google Scholar
  31. Morel C (1988) Analyse, par traçage isotopique, du comportement du phosphore dans les systémes sol-engrais-plantes: conséquence en matiére de fertilisation. Thése, Université Aix-Marseille III, FranceGoogle Scholar
  32. Morel C & Fardeau JC (1987) Le phosphore assimilable des sols intertropicaux: ses relations avec le phosphore extrait par deux méthodes chimiques. Agron Trop 42: 248–256Google Scholar
  33. Morel C & Fardeau JC (1988) Détermination par traçage isotopique de la valeur fertilisante du phosphate alumino-calcique: comparaison avec d'autres formes. Agronomie 8: 47–54Google Scholar
  34. Morel C & Fardeau JC (1990) Uptake of phosphate from soils and fertilizers as affected by soil P availability and solubility of phosphorus fertilizers. Plant Soil 121: 217–224Google Scholar
  35. Morel C & Plenchette C (1994) Is the isotopically exchangeable phosphate of a loamy soil the plant available P? Plant Soil 158: 287–297Google Scholar
  36. Nirel PMV & Morel FMM (1990) Pitfalls of sequential extractions. Water Res 24: 1055–1056Google Scholar
  37. Oberson A, Fardeau JC, Sticher H & Besson JM 1993 Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol Fert Soils 16: 111–117Google Scholar
  38. Poss R, Fardeau JC, Saragoni H & Quantin P (1991) Potassium release and fixation in ferrasols (oxisols) from Southern Togo. J Soil Sci 42: 649–660Google Scholar
  39. Salcedo IH, Bertino F & Sampaio EVSB (1991) Reactivity of phosphorus in northeastern Brazilian soils assessed by isotopic dilution. Soil Sci Soc Am J 55: 140–145Google Scholar
  40. Sharpley AN & Withers PJA (1994) The environmentally-sound management of agricultural phosphorus. Fert Res 39: 133–146Google Scholar
  41. Sheppard CW (1972) Basic principles of the tracer method. Introduction to mathematical tracer kinetics. John Wiley & Sons, New York, USAGoogle Scholar
  42. Stevenson FJ (1985) The phosphorus cycle. In: Stevenson FJ (ed) Cycles of Soil pp 231–284, John Wiley & Sons, New York, USAGoogle Scholar
  43. Syers JK & Lu Ru-kun (1990) Inorganic reactions influencing phosphorus cycling in soils. In: Phosphorus Requirements for sustainable Agriculture in Asia and Oceania, pp 191–197. IRRI, Manilla, PhillipinesGoogle Scholar
  44. Thibaud MC, Morel C & Fardeau JC (1988) Contribution of phosphorus issued from crop residues to plant nutrition. Soil Sci Plant Nutr 34: 481–491Google Scholar
  45. Walworth JL & Sumner ME (1987) The diagnosis and recommendation integrated system (DRIS). Adv Soil Sci 6: 149–188Google Scholar
  46. White RE & Beckett PHT 1964 Studies on the phosphate potentials of soils. Part I. The measurement of phosphate potential. Plant Soil 20: 1–16.Google Scholar
  47. Wiklander L (1950) Kinetics of phosphate exchange in soils. Ann R Vet Coll Sweden 17: 407–424Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. C. Fardeau
    • 1
  1. 1.Département de Ecophysiologie Végétale et MicrobiologieCommissariat á l'Energie Atomique - CadaracheFrance

Personalised recommendations