Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 6, pp 873–888 | Cite as

Regulation of the mitochondrial ATPasein situ in cardiac muscle: Role of the inhibitor subunit

  • William Rouslin


The mitochondrial F1-ATPase inhibitor protein, IF1, binds to β subunits of the F1-ATPase bothin vitro andin situ under nonenergizing conditions, i.e., under conditions that allow a net hydrolysis of ATP by the mitochondrial ATPase to take place. This reversible IF1 binding occurs in a wide variety of cell types including (anaerobic) baker's yeast cells and (ischemic) mammalian cardiomyocytes under conditions that limit oxidative phosphorylation. The binding of inhibitor results in a marked slowing of ATP hydrolysis by the undriven mitochondrial ATP synthase. An apparent main function of this reversible IF1 binding, at least in cells that undergo aerobic-anaerobic switching, is the mitigation of a wasteful hydrolysis of ATP produced by glycolysis during anoxic or ischemic intervals, by the mitochondrial ATPase. While this apparent main function is probably of considerable importance in cells that normally either can or must undergo aerobic-anaerobic switching such as baker's yeast cells and skeletal myocytes, one wonders why a full complement of IF1 has been retained in certain cells that normally do not undergo such aerobic-anaerobic switching, cells such as adult mammalian cardiomyocytes of many species. While some mammalian species have, indeed, not retained a functional complement of IF1 in their cardiomyocytes, those that have can benefit significantly from its presence during intervals of myocardial ischemia.

Key Words

Oxidative phosphorylation F1-ATPase IF1 ATPase inhibitor protein ATPase regulationin situ cardiac muscle myocardial ischemia cell acidosis mitochondrial matrix pH glycolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asami, K., Juntti, K., and Ernster, L. (1970).Biochim. Biophys. Acta 205 307–311.Google Scholar
  2. Asimakis, G. K., and Conti, V. R. (1984).J. Mol. Cell. Cardiol. 16 439–448.Google Scholar
  3. Beltran, C., de Gomez-Puyou, M. T., Gomez-Puyou, A., and Darzon, A. (1984).Eur. J. Biochem. 144 151–157.Google Scholar
  4. Chernyak, B. V., and Kozlov, I. A. (1986).Trends Biochem. Sci. 11 32–35.Google Scholar
  5. Chernyak, B. V., Dukhovich, V. F., and Khodjaev, E. Y. (1987).FEBS Lett. 215 300–304.Google Scholar
  6. Cross, R. W. (1981).Annu. Rev. Biochem. 50 681–714.Google Scholar
  7. Dreyfus, G., Gomez-Puyou, A., and de Gomez-Puyou, M. T. (1981).Biochem. Biophys. Res. Commun. 100 400–406.Google Scholar
  8. Frangione, B., Rosenwasser, E., Penefsky, H., S., and Pullman, M. E. (1981).Proc. Natl. Acad. Sci. USA 78 7403–7407.Google Scholar
  9. Fujii, S., Hashimoto, T., Yishida, Y., Miura, R., Yamano, and Tagawa, K. (1983).J. Biochem. 93 189–196.Google Scholar
  10. Galante, Y. M., Siu-Yin, W., and Hatefi, Y. (1981).Biochemistry 20 2671–2678.Google Scholar
  11. Godin, D. V., Tuchek, J. M., and Moore, M. (1980).Can. J. Biochem. 58 777–786.Google Scholar
  12. Gomez-Fernandez, J. C., and Harris, D. A. (1978).Biochem. J. 176 967–975.Google Scholar
  13. Guerrieri, F., Scarfo, R., Zanotti, F., Wu-Che, Y., and Papa, S. (1987a).FEBS Lett. 213 67–72.Google Scholar
  14. Guerrieri, F., Zanotti, F., Wu-Che, Y., Scarfo, R., and Papa, S. (1987b).Biochim. Biophys. Acta 892 284–293.Google Scholar
  15. Hansford, R. G. (1985).Rev. Physiol. Biochem. Pharmacol. 102 2–72.Google Scholar
  16. Harris, D. A. (1985). InH + ATPase (ATP synthase): Structure, Function, Biogenesis (Papa, S.,et al., eds.). Adriatica Editrice, Bari, pp. 387–395.Google Scholar
  17. Hashimoto, T., Yoshida, Y., and Tagawa, K. (1990).J. Bioenerg. Biomembr. 22 27–38.Google Scholar
  18. Hillered, L., Muchiri, P. M., Nordenbrand, K., and Ernster, L. (1983).FEBS Lett. 154 247–250.Google Scholar
  19. Horstman, L. L., and Racker, E. (1970).J. Biol. Chem. 245 1336–1344.Google Scholar
  20. Husain, I., and Harris, D. A. (1983).FEBS Lett. 160 110–114.Google Scholar
  21. Ishikawa, N., Yoshida, Y., Hashimoto, T., Ogasawara, N., Yoshikawa, H., Imamoto, F., and Tagawa, K. (1990).J. Biol. Chem. 265 6274–6278.Google Scholar
  22. Jackson, P. J., and Harris D. A. (1988).FEBS Lett. 229 224–228.Google Scholar
  23. Jennings, R. B., and Reimer, K. A. (1991).Annu. Rev. Med. 42 225–246.Google Scholar
  24. Jung, D. W., Apel, L., and Brierley, G. P. (1990).Biochemistry 29 4121–4128.Google Scholar
  25. Klein, G., and Vignais, P. V. (1983).J. Bioenerg. Biomembr. 15 347–362.Google Scholar
  26. Klein, G., Satre, M., Dianoux, A. C., and Vignais, P. V. (1980).Biochemistry 19 2919–2925.Google Scholar
  27. LaNoue, K. F., Watts, J. A., and Koch, C. D. (1981).Am. J. Physiol. 241 H663-H671.Google Scholar
  28. Lippe, G., Sorgato, M. C., and Harris, D. A. (1988a).Biochim. Biophys. Acta 933 1–11.Google Scholar
  29. Lippe, G., Sorgato, M. C., and Harris, D. A. (1988b).Biochim. Biophys. Acta 933 12–21.Google Scholar
  30. Lloyd, D., and Edwards, S. W. (1976).J. Biochem. 160 335–342.Google Scholar
  31. Luciakova, K., and Kuzela, S. (1984).FEBS Lett. 177 85–88.Google Scholar
  32. Matsubara, H., Hase, T., Hashimoto, T., and Tagawa, K. (1981).J. Biochem. 94 315–318.Google Scholar
  33. Panchenko, M. V., and Vinogradov, A. D. (1985).FEBS Lett. 184 226–230.Google Scholar
  34. Pedersen, P. L., Schwertzmann, K., and Cintron, N. (1981).Curr. Top. Bioenerg. 11 149–199.Google Scholar
  35. Pullman, M. E., and Monroy, G. C. (1963).J. Biol. Chem. 238 3762–3769.Google Scholar
  36. Rossi, C. S., and Lehninger, A. L. (1964).J. Biol. Chem. 239 3971–3980.Google Scholar
  37. Rouslin, W. (1983).J. Biol. Chem. 258 9657–9661.Google Scholar
  38. Rouslin, W. (1987a).J. Biol. Chem. 262 3472–3476.Google Scholar
  39. Rouslin, W. (1987b).Am. J. Physiol. 252 H985-H989.Google Scholar
  40. Rouslin, W. (1988).J. Mol. Cell. Cardiol. 20 999–1007.Google Scholar
  41. Rouslin, W., and Broge, C. W. (1989a).Arch. Biochem. Biophys. 275 385–394.Google Scholar
  42. Rouslin, W., and Broge, C. W. (1989b).J. Biol. Chem. 264 15224–15229.Google Scholar
  43. Rouslin, W., and Broge, C. W. (1990).Arch. Biochem. Biophys. 280 103–111.Google Scholar
  44. Rouslin, W., and Pullman, M. E. (1987).J. Mol. Cell. Cardiol. 19 661–668.Google Scholar
  45. Rouslin, W., Erickson, J. L., and Solaro, R. J. (1986).Am. J. Physiol. 250 H503-H508.Google Scholar
  46. Rouslin, W., Broge, C. W., and Grupp, I. L. (1990).Am. J. Physiol. 259 H1759-H1766.Google Scholar
  47. Schwertzmann, K., and Pedersen, P. L. (1981).Biochemistry 20 6305–6311.Google Scholar
  48. Schwertzmann, K., and Pedersen, P. L. (1986).Arch. Biochem. Biophys. 250 1–18.Google Scholar
  49. Tuena de Gomez-Puyou, M., Gavilanes, M., Gomez-Puyou, A., and Ernster, L. (1980).Biochim. Biophys. Acta 592 396–405.Google Scholar
  50. Van de Stadt, R. J., and Van Dam, K. (1974).Biochim. Biophys. Acta 347 240–252.Google Scholar
  51. Van de Stadt, R. J., De Boer, B. L., and Van Dam, K. (1973).Biochim. Biophys. Acta 292 338–349.Google Scholar
  52. Vercesi, A., Reynafarje, B., and Lehninger, A. L. (1978).J. Biol. Chem. 253 6379–6385.Google Scholar
  53. Yamada, E. W., and Huzel, N. J. (1988).J. Biol. Chem. 263 11498–11503.Google Scholar
  54. Yamada, E. W., and Huzel, N. J. (1989).Biochemistry 28 9714–9718.Google Scholar
  55. Yamada, E. W., Shiffman, F. H., and Huzel, N. J. (1980).J. Biol Chem. 255 267–273.Google Scholar
  56. Yoshida, Y., Sato, T., Hashimoto, T., Ichikawa, N., Nakai, S., Yoshikawa, H., Imamoto, F., and Tagawa, K. (1990).Eur. J. Biochem. 192 49–53.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • William Rouslin
    • 1
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnati

Personalised recommendations