Journal of Bioenergetics and Biomembranes

, Volume 23, Issue 5, pp 715–741

The proton-translocating nicotinamide adenine dinucleotide transhydrogenase

  • J. B. Jackson
Mini-Review

Abstract

H+-transhydrogenase couples the reversible transfer of hydride ion equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane. There are separate sites on the enzyme for the binding of NAD(H) and of NADP(H). There are some indications of the position of the binding sites in the primary sequence of the enzymes from mitochondria andEscherichia coli. Transfer of hydride ion equivalents only proceeds when a reduced and an oxidized nucleotide are simultaneously bound to the enzyme. When Δp=0 the rate of interconversion of the ternary complexes of enzyme and nucleotide substrates is probably limiting. An increase in Δp accelerates the rate of interconversion in the direction of NADH → NADP+ until another kinetic component, possibly product release, becomes limiting. The available data are consistent with either direct or indirect mechanisms of energy coupling.

Key words

Transhydrogenase protonmotive force proton translocation energy coupling 

Abbreviations

DCCD

N N1-dicyclohexylcarbodiimide

FSBA

51-[p-(fluorosulfonyl)benzoyl] adenosine

FCCP

carbonylcyanide-p-fluoromethoxyphenylhydrazone

H+-Thase

H+-transhydrogenase

thio-NADP+

thionicotinamide adenine dinucleotide phosphate

AcPdAd+

3-acetylpyridine adenine dinucleotide

Δp

proton electrochemical gradient

Δψ

membane potential

ΔpH

pH difference across the membrane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W. M., Fowler, W. T., Pennington, R. M., and Fisher, R. R. (1981).J. Biol. Chem. 256, 1888–1895.Google Scholar
  2. Anderson, W. M., and Fisher, R. R. (1981).Biocim. Biophys. Acta 635, 194–199.Google Scholar
  3. Apell, H. J., Borlinghaus, R., and Lauger, P. (1987).J. Membr. Biol. 97, 179–191.Google Scholar
  4. Blazyk, J. F., and Fisher, R. R. (1975).FEBS Lett. 50, 227–232.Google Scholar
  5. Blazyk, J. F., Lam, D., and Fisher, R. R. (1976).Biochemistry 15, 2843–2848.Google Scholar
  6. Boyer, P. D. (1988).Trends Biochem. Sci. 13, 5–7.Google Scholar
  7. Bragg, P. D., Davis, P. L., and Hou, C. (1972).Biochem. Biophys. Res. Commun. 47, 1248–1255.Google Scholar
  8. Branden, C.-I., and Eklund, H. (1980). InDehydrogenases Requiring Nicotinamide Coenzymes (Jeffery, J., ed.), Birkhauser Verlag, Basel, pp. 40–84.Google Scholar
  9. Carlenor, E., Persson, B., Glaser, E., Andersson, B., and Rydstrom, J. (1988).Plant Physiol. 88, 303–308.Google Scholar
  10. Chaykin, S., Meinhart, J. O., and Krebs, E. G. (1956).J. Biol. Chem. 220, 811–820.Google Scholar
  11. Chiang, G., and Dilley, R. A. (1987).Biochemistry 26, 4911–4916.Google Scholar
  12. Clarke, D. M., and Bragg, P. D. (1985).Eur. J. Biochem. 149, 517–523.Google Scholar
  13. Clarke, D. M., Loo, T. W., Gillam, S., and Bragg, P. D. (1986).Eur. J. Biochem. 158, 647–653.Google Scholar
  14. Cornish-Bowden, A. (1979).Fundamentals of Enzyme Kinetics, Butterworths, London.Google Scholar
  15. Cotton, N. P. J., Myatt, J. F., and Jackson, J. B. (1987).FEBS Lett. 219, 88–92.Google Scholar
  16. Cotton, N. P. J., Lever, T. M., Nore, B. F., Jones, M. R., and Jackson, J. B. (1989).Eur. J. Biochem. 182, 593–603.Google Scholar
  17. Danielson, L., and Ernster, L. (1963).Biochem. Biophys. Res. Commun. 10, 91–96.Google Scholar
  18. Dontsov, A. B., Grinius, L. L., Jasaites, A. A., Severina, I., and Skulachev, V. P. (1972).J. Bioenerg. 3, 277–303.Google Scholar
  19. Earle, S. R., and Fisher, R. R. (1980).J. Biol. Chem. 255, 827–830.Google Scholar
  20. Earle, S. R., O'Neal, S. G., and Fisher, R. R. (1978a).Biochemistry 17, 4683–4690.Google Scholar
  21. Earle, S. R., Anderson, W. M., and Fisher, R. R. (1978b).FEBS Lett. 91, 21–24.Google Scholar
  22. Enander, K., and Rydstrom, J. (1982).J. Biol. Chem. 257, 14760–14766.Google Scholar
  23. Eytan, G. D., Persson, B., Ekebacke, A., and Rydstrom, J. (1987a).J. Biol. Chem. 262, 5008–5014.Google Scholar
  24. Eytan, G. D., Eytan, E., and Rydstrom, J. (1987b).J. Biol. Chem. 262, 5015–5019.Google Scholar
  25. Eytan, G. D., Carlenor, E., and Rydstrom, J. (1990).J. Biol. Chem. 265, 12949–12954.Google Scholar
  26. Fisher, R. R., and Earle, S. R. (1980).Biochemistry 19, 561–569.Google Scholar
  27. Fisher, R. R., and Earle, S. R. (1982). InThe Pyridine Nucleotide Coenzymes (Everse, J., Andersson, B., and You, K.-S., eds.), Academic Press, New York, pp. 279–324.Google Scholar
  28. Fisher, R. R., and Guillory, R. J. (1971a).J. Biochem. Chem. 246, 4687–4693.Google Scholar
  29. Fisher, R. R., and Guillory, R. J. (1971b).J. Biol. Chem. 246, 4679–4684.Google Scholar
  30. Fisher, R. R., Rampey, S. A. Sadighi, A., and Fisher, K. (1975).J. Biol. Chem. 250, 819–825.Google Scholar
  31. Galante, Y. M., Lee, Y., and Hatefi, Y. (1980).J. Biol. Chem. 255, 9641–9646.Google Scholar
  32. Gerolimatos, B., and Hanson, R. L. (1978).J. Bacteriol. 134, 394–400.Google Scholar
  33. Griffiths, D. E., and Robertson, A. M. (1966).Biochim. Biophys. Acta 118, 453–464.Google Scholar
  34. Hansen, U.P., Gradmann, D., Sanders, D., and Slayman, C. L. (1981).J. Membr. Biol. 63, 165–190.Google Scholar
  35. Hanson, R. L. (1979).J. Biol. Chem. 254, 888–893.Google Scholar
  36. Hanson, R. L., and Rose, C. (1980).J. Bacteriol. 141, 401–404.Google Scholar
  37. Hartog, A. F., and Berden, J. A. (1990).FEBS Lett. 261, 161–164.Google Scholar
  38. Hennecke, M., and Plapp, B. V. (1983).Biochemistry 22, 3721–3728.Google Scholar
  39. Hill, T. L. (1977).Free Energy Transduction in Biology, Academic Press, New York.Google Scholar
  40. Hoek, J. B., Rydstrom, J., and Ernster, L. (1973).Biochim. Biophys. Acta 305, 669–674.Google Scholar
  41. Homyk, M., and Bragg, P. D. (1979).Biochim. Biophys. Acta 571, 201–217.Google Scholar
  42. Hou, C., Potier, M., and Bragg, P. D. (1990).Biochim. Biophys. Acta 1018, 61–66.Google Scholar
  43. Houghton, R. L., Fisher, R. J., and Sanadi, D. R. (1976).Arch. Biochem. Biophys. 176, 747–752.Google Scholar
  44. Hu, P.-S., Persson, B., Carlenor, E., Hartog, A. F., Hoog, J.-O., Jornvall, H., Berden, J. A., and Rydstrom, J. (1988). 5th Eur. Bioenergetics Conf., Short Reports Vol. 5, p. 65 (Abstract).Google Scholar
  45. Jackson, J. B., Cotton, N. P. J., Lever, T. M., Cunningham, I. J., Palmer, T., and Jones, M. R. (1990). InMolecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria (Drews, G., and Dawes, E. A., eds.), Plenum Press, New York, pp. 415–424.Google Scholar
  46. Jacobs, E., and Fisher, R. R. (1979).Biochemistry 18, 4315–4322.Google Scholar
  47. Jacobs, E., Heriot, K., and Fisher, R. R. (1977).Arch. Microbiol. 115, 151–156.Google Scholar
  48. Jenks, W. P. (1980).Adv. Enzymol. 51, 75–106.Google Scholar
  49. Jenks, W. P. (1983).Curr. Top. Membr. Transp. 19, 1–18.Google Scholar
  50. Kawasaki, T., Satoh, K., and Kaplan, N. O. (1964).Biochem. Biophys. Res. Commun. 17, 648–654.Google Scholar
  51. Kay, W. W., and Bragg, P. D. (1975).Biochem. J. 150, 21–29.Google Scholar
  52. Keister, D. L., and Yike, N. J. (1966).Biochem. Biophys. Res. Commun. 24, 519–525.Google Scholar
  53. Kell, D. B., and Westerhoff, H. V. (1985). InOrganized Multienzyme Systems, Academic Press, New York, pp. 63–139.Google Scholar
  54. Kozlov, I. A. (1981).Curr. Top. Membr. Transp. 16, 383–392.Google Scholar
  55. Kozlov, I. A. Milgrom, Y. M., Saburova, L. A., and Sobolev, A. Y. (1984).Eur. J. Biochem. 145, 413–416.Google Scholar
  56. Lauger, P. (1984).Biochim. Biophys. Acta 779, 307–341.Google Scholar
  57. Lauger, P., and Stark, G. (1970).Biochim. Biophys. Acta 211, 458–466.Google Scholar
  58. Lee, C.-P., and Ernster, L. (1964).Biochim. Biophys. Acta 81, 187–190.Google Scholar
  59. Lee, C.-P., Simard-Duquesne, N., Ernster, L., and Hoberman, H. D. (1965).Biochim. Biophys. Acta 105, 397–409.Google Scholar
  60. Lever, T. M., Palmer, T., Cunningham, I. J., Cotton, N. P. J., and Jackson, J. B. (1990).Eur. J. Biochem. 197, 247–255.Google Scholar
  61. Liang, A., and Houghton, R. L. (1981).J. Bacteriol. 146, 997–1002.Google Scholar
  62. McFadden, B. J., and Fisher, R. R. (1978).Arch. Biochem. Biophys. 190, 820–828.Google Scholar
  63. Mitchell, P. (1966).Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Res. Publ., Bodmin, U.K.Google Scholar
  64. Mitchell, P. (1969).Theor. Exp. Biophys. 2, 159–215.Google Scholar
  65. Mitchell, P. (1972).J. Bioenerg. Biomembr. 3, 5–24.Google Scholar
  66. Mitchell, P. (1987). InIntegration and Control of Metabolic Processes; Pure and Applied Aspects (Kon, O.L., ed.), ICSU Press, Cambridge, U.K., pp. 231–245.Google Scholar
  67. Modrak, D. E., Wu, L. N. Y., Alberta, J. A., and Fisher, R. R. (1988).Biochemistry 27, 7665–7671.Google Scholar
  68. Moyle, J., and Mitchell, P. (1973).Biochem. J. 132, 571–585.Google Scholar
  69. O'Neal, S. G., and Fisher, R. R. (1977).J. Biol. Chem. 252, 4552–4556.Google Scholar
  70. Oppenheimer, N. J. (1987). InPyridine Nucleotide Coenzymes (Dolphin, D., Poulson, R., and Avramovic, O., eds.), Wiley, New York, pp. 323–365.Google Scholar
  71. Oustroumov, S. A., Samuilov, V. D., and Skulachev, V. P. (1973).FEBS Lett. 31, 27–30.Google Scholar
  72. Palmer, T., and Jackson, J. B. (1990a).FEBS Lett. 277, 45–48.Google Scholar
  73. Palmer, T., and Jackson, J. B. (1990b). unpublished.Google Scholar
  74. Parker, D. M., and Holbrook, J. J. (1977). InPyridine Nucleotide-Dependent Dehydrogenases (Sund, H., ed.), De Gruyter, Berlin, pp. 485–501.Google Scholar
  75. Pennington, R. M., and Fisher, R. R. (1981).J. Biol. Chem. 256, 8963–8969.Google Scholar
  76. Persson, B. (1988).Mitochondrial Nicotinamide Nucleotide Transhydrogenase, University of Stockholm, Sweden.Google Scholar
  77. Persson, B., and Rydstrom, J. (1987).Biochem. Biophys. Res. Commun. 142, 573–578.Google Scholar
  78. Persson, B., Enander, K., Tang, H. L., and Rydstrom, J. (1984).J. Biol. Chem. 259, 8626–8632.Google Scholar
  79. Perrson, B., Ahnstrom, G., and Rydstrom, J. (1987a).Arch. Biochem. Biophys. 259, 341–349.Google Scholar
  80. Persson, B., Berden, J. A., Rydstrom, J., and van Dam, K. (1987b).Biochim. Biophys. Acta 894, 239–251.Google Scholar
  81. Persson, B., Hartog, A. F., Rydstrom, J., and Berden, J. A. (1988).Biochim. Biophys. Acta 953, 241–248.Google Scholar
  82. Phelps, D. C., and Hatefi, Y. (1981).J. Biol. Chem. 256, 8217–8221.Google Scholar
  83. Phelps, D. C., and Hatefi, Y. (1984a).Biochemistry 23, 6340–6344.Google Scholar
  84. Phelps, D. C., and Hatefi, Y. (1984b).Biochemistry 23, 4475–4480.Google Scholar
  85. Phelps, D. C., and Hatefi, Y. (1984c).Biochemistry 23, 4475–4480.Google Scholar
  86. Phelps, D. C., and Hatefi, Y. (1985).Biochemistry 24, 3503–3507.Google Scholar
  87. Rydstrom, J., Teixeira Da Cruz, A., and Ernster, L. (1971).Eur. J. Biochem. 23, 212–219.Google Scholar
  88. Rydstrom, J. (1977).Biochim. Biophys. Acta 463, 155–184.Google Scholar
  89. Rydstrom, J. (1979).J. Biol. Chem. 254, 8611–8619.Google Scholar
  90. Rydstrom, J., and Hoek, J. B. (1988).Biochem. J. 254, 1–10.Google Scholar
  91. Rydstrom, J., Lee, C.-P., and Ernster, L. (1981). InChemiosmotic Proton Circuits in Biological Membranes (Skulachev, V. P., and Hinkle, P. C., eds.), Addison-Wesley, Reading, Massachusetts, pp. 483–508.Google Scholar
  92. Rydstrom, J., Persson, B., and Carlenor, E. (1987). InPyridine Nucleotide Coenzyme: Chemical Biochemical, and Medical Aspects, Vol. 2B (Dolphin, D., Poulson, R., and Avramovic, O., eds.), Wiley, New York, pp. 433–460.Google Scholar
  93. Scarborough, G. A. (1985).Microbiol. Rev. 49, 214–231.Google Scholar
  94. Skulachev, V. P. (1970).FEBS Lett. 11, 301–308.Google Scholar
  95. Skulachev, V. P. (1974).Ann. N.Y. Acad. Sci. 227, 188–202.Google Scholar
  96. Smith, C. M., and Plaut, G. W. E. (1979).Eur. J. Biochem. 97, 283–295.Google Scholar
  97. Teixeira Da Cruz, A., Rydstrom, J., and Ernster, L. (1971).Eur. J. Biochem. 23, 203–211.Google Scholar
  98. Wakabayashi, S., and Hatefi, Y. (1987a).Biochem. Int. 15, 667–675.Google Scholar
  99. Wakabayashi, S., and Hatefi, Y. (1987b).Biochem. Int. 15, 915–924.Google Scholar
  100. Westheimer, F. H. (1987). InPyridine Nucleotide Coenzymes: Chemical, Biochemical, and Medical Aspects, Vol. 2A (Dolphin, D., Poulson, R., and Avramovich, O., eds.), Wiley, New York, pp. 253–322.Google Scholar
  101. Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986).J. Membr. Biol. 187, 101–107.Google Scholar
  102. Wu, L. N. Y., and Fisher, R. R. (1982).Biochim. Biophys. Acta 681, 388–396.Google Scholar
  103. Wu, L. N. Y., and Fisher, R. R. (1983).J. Biol. Chem. 258, 7847–7851.Google Scholar
  104. Wu, L. N. Y., Earle, S. R., and Fisher, R. R. (1981).J. Biol. Chem. 256, 7401–7408.Google Scholar
  105. Wu, L. N. Y., Alberta, J. A., and Fisher, R. R. (1986).Methods Enzymol. 126, 353–360.Google Scholar
  106. Yamaguchi, M., and Hatefi, Y. (1985).Arch. Biochem. Biophys. 243, 20–27.Google Scholar
  107. Yamaguchi, M., and Hatefi, Y. (1989).Biochemistry 28, 6050–6056.Google Scholar
  108. Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J. A. (1988).J. Biol. Chem. 263, 2761–2767.Google Scholar
  109. Yamaguchi, M., Wakabayashi, S., and Hatefi, Y. (1990).Biochemistry 29, 4136–4143.Google Scholar
  110. You, K., Arnold, L. J., Jr., Allison, W. S., and Kaplan, N. O. (1978).Trends Biochem. Sci. 3, 265–268.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • J. B. Jackson
    • 1
  1. 1.School of BiochemistryUniversity of BirminghamBirminghamU.K.

Personalised recommendations