Plant and Soil

, Volume 38, Issue 2, pp 267–279 | Cite as

Secondary effects of potassium and nitrogen nutrition of rice: Change in microbial activity and iron reduction in the rhizosphere

  • G. Trolldenier


In solution culture experiments with rice the effects of different potassium applications and of various nitrogen sources on some criteria of microbial activity were studied. The following results have been obtained:

The number of bacteria in the rhizosphere depends on the form of nitrogen available to the plants and the potassium nutritional state. With ammonium as a nitrogen source a greater number of bacteria is found in the rhizosphere than with nitrate. The interruption of potassium nutrition results in an increase in the total number of bacteria.

In accordance with the different bacterial colonisation, the oxygen content in the nutrient solution with nitrate remains higher than with ammonium nutrition. With an increase in bacterial number after K interruption, a corresponding depression of the oxygen content in the nutrient solution can be noted. This is due to the higher respiration rate of the roots and the bacteria adhering to them in K-deficient plants.

K deficiency consequently results in an increased concentration of reduced divalent iron in the nutrient solution.

From the above results it follows that optimum potassium nutrition makes an essential contribution towards counteracting highly reducing conditions in paddy soils.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberda T., Growth and root development of lowland rice and its relation to oxygen supply. Plant and Soil5, 1–33 (1953).Google Scholar
  2. 2.
    Anonymous, The Far East Fertilizer Workshop, Taipei 1960. Recent status of soil and fertilizer in Japan. Development Bureau, Ministry of Agriculture and Forestry, Government of Japan.Google Scholar
  3. 3.
    Barat G. K., Hirata H., Kumazawa K., and Mitsui S., Studies on the change of respiratory system in roots in relation to the growth of plants. III. Response of the activity of terminal oxidases in nodal roots to nitrogen and potassium starvations. Soil Sci. Plant Nutr.15, 118–123 (1969).Google Scholar
  4. 4.
    Dommergues Y., Combremont R., Beck G., and Ollat C., Note préliminaire concernant la sulfato-réduction rhizosphérique dans un sol salin Tunisien. Rev. Ecol. Biol. Sol,6, 115–129 (1969).Google Scholar
  5. 5.
    Evans H. J. and Sorger G., Role of mineral elements with emphasis on the univalent cations. Ann. Rev. Plant Physiol.17, 47–76 (1966).Google Scholar
  6. 6.
    Grineva, G. M., Excretion by plant roots during brief periods of anaerobiosis. Soviet Plant Physiol. (Fiziologiya Rastenii.).Transl. in Am. Inst. Biol. Sci.8, 549–552 (1962).Google Scholar
  7. 7.
    Heide van der H., De Boer-Bolt B. M. and Van Raalte M. H., The effect of a low oxygen content of the medium on the roots of barley seedlings. Acta Botan. Neerl.12, 231–247 (1963).Google Scholar
  8. 8.
    Jacq V. and Dommergues Y., Influence de l'intensité d'eclairement et de l'age de la plante sur la sulfato reduction rhizosphérique. Zbl. Bakter. II125, 661–669 (1970).Google Scholar
  9. 9.
    Jeffery J. W. O., Defining the state of reduction of a paddy soil. J. Soil Sci.12, 172–179 (1961).Google Scholar
  10. 10.
    Kamura T., Takai Y. and Ishikawa K., Microbial reduction mechanism of ferric iron in paddy soils. Soil Sci. Plant Nutr.9, 171–175 (1963).Google Scholar
  11. 11.
    Karbach L., Untersuchungen über den Einfluß der Bodenmikroorganismen auf die Redoxverhältnisse im Boden. Landwirtsch. Forsch.14, 64–69 (1961).Google Scholar
  12. 12.
    Kalpagé F. S. C. P., Redox potential trends in a submerged rice soil. Plant and Soil23, 129–136 (1965).Google Scholar
  13. 13.
    McRae I. C. and Castro, Teresita F. Root exudates of the rice plant in relation to akagare, a physiological disorder of rice. Plant and Soil26, 317–323 (1967).Google Scholar
  14. 14.
    Okamoto S., Effects of potassium nutrition on the glycolysis and Krebscycle in taro plants. Soil Sci. Plant Nutr.13, 143–150 (1967).Google Scholar
  15. 15.
    Okamoto S. The respiration in the roots of broad bean and barley under a moderate potassium deficiency. Soil Sci. Plant Nutr.14,175–182 (1968).Google Scholar
  16. 16.
    Okamoto S. and Oji Y., Effect of mineral nutrition on metabolic change induced in crop plant roots (IV). Effects of potassium nutrition on glycolysis in sweet potato roots. Soil Sci. Plant Nutr.12, 169–175 (1966).Google Scholar
  17. 17.
    Ottow J. C. G., Evaluation of iron reducing bacteria in soil and the physiological mechanism of iron reduction in Aerobacter aerogenes. Z. Allgem. Mikrobiol.8, 441–443 (1968).Google Scholar
  18. 18.
    Ottow J. C. G., Der Einflu\ von Nitrat, Chlorat, Sulfat, Eisenoxidform und Wachstumsbedingungen auf das Ausmaß der bakteriellen Eisenreduktion. Z. Pflanzenern. u. Bodenk.124, 238–253 (1969).Google Scholar
  19. 19.
    Ottow J. C. G., The distribution and differentiation of ironreducing bacteria in gley soils. Ztrbl. Bakteriol. II123, 600–615 (1969).Google Scholar
  20. 20.
    Ottow J. C. G., Ecologische en fysiologische aspecten van ijzerreductie en gleyvorming door bacterien in hydromorfe gronden. Landbouwk. Tijdschr.82, 453–461 (1970).Google Scholar
  21. 21.
    Ottow J. C. G., Iron reduction and gley formation by nitrogen fixing Clostridia. Oecologia (Berl.)6, 164–175 (1971).Google Scholar
  22. 22.
    Ottow J. C. G. and Glathe H., Isolation and identification of iron reducing bacteria from gley soils. Soil Biol. Biochem.3, 43–55 (1971).Google Scholar
  23. 23.
    Ottow J. C. G. and Ottow H., Gibt es eine Korrelation zwischen der eisenredu-zierenden und der nitratreduzierenden Flora des Bodens? Zbl. Bakteriol. II,124, 314–318 (1970).Google Scholar
  24. 24.
    Ponnamperuma, F. N. and Castro, R. U., Redox systems in submerged soils. 8th Intern. Congr. Soil Sci., Bukarest 1964, Vol. 3, 379–386.Google Scholar
  25. 25.
    Shibuya, K. and Torrii, T., Unfavourable effects of the iron salts on the availability of potash fertilizers. Soc. Soil and Manure, Japan 1935, according to Chang, S. C. Chemistry of paddy soils. Food & Fertilizer Technology Center Taipei, Extension Bulletin No. 7, 1971.Google Scholar
  26. 26.
    Tadano T. and Tanaka A., Studies on the iron nutrition of rice plants, Part 3. Iron absorption affected by potassium status of the plant. J. Soil Sci. and Manure Japan41, 142–148 (1970) (in Japanese).Google Scholar
  27. 27.
    Trolldenier G., Einfluß der Kalium-und Stickstof fernährung von Weizen auf die Bakterienbesiedlung der Rhizosp häre. Landwirtsch. Forsch.26/II. Sonderh., 37–46 (1971).Google Scholar
  28. 28.
    Trolldenier G., Einfluß der Stickstoff- und Kaliumernährung von Weizen sowie der Sauerstoffversorgung der Wurzeln auf Bakterienzahl, Wurzelatmung und Denitrifikation in der Rhizosphäre. Zbl. Bakteriol. II,126, 130–141 (1971).Google Scholar
  29. 29.
    Trolldenier G., L'influence de la nutrition potassique de haricots nains (Phaseolus vulgaris var. nanus) sur l'exudation de substances organiques marquées au14C, le nombre de bactéries rhizosphériques et la respiration des racines. Rev. Ecol. Biol. du Sol9, 595–603 (1972).Google Scholar
  30. 30.
    Vlamis J. and Davis A. R., Germination, growth and respiration of rice and barley seedlings at low oxygen pressures. Plant Physiol.18, 685–692 (1943).Google Scholar
  31. 31.
    Vlamies J. and Davis A. R., Effect of oxygen tension on certain physiological responses of rice, barley and tomato. Plant Physiol.19, 33–51 (1944).Google Scholar
  32. 32.
    Yuan W. L. and Ponnamperuma F. N., Chemical retardation of the reduction of flooded soils and the growth of rice. Plant and Soil25, 347–360 (1966).Google Scholar

Copyright information

© Martinus Nijhoff, The Hague 1973

Authors and Affiliations

  • G. Trolldenier
    • 1
  1. 1.Landwirtschaftliche Forschungsanstalt BüntehofHannover-KirchrodeGermany

Personalised recommendations