Molecular Biology Reports

, Volume 7, Issue 1–3, pp 149–158 | Cite as

A general function of noncoding polynucleotide sequences

Mass binding of transconformational proteins
  • E. Zuckerkandl

Abstract

It is proposed that a general function of noncoding DNA and RNA sequences in higher organisms (intergenic and intervening sequences) is to provide multiple binding sites over long stretches of polynucleotide for certain types of regulatory proteins. Through the building up or abolishing of high-order structures, these proteins either sequester sites for the control of, e.g., transcription or make the sites available to local molecular signals. If this is to take place, the existence of a ‘c-value paradox’ becomes a requirement. Multiple binding sites for a given protein may recur in the form of a sequence ‘motif’ that is variable within certain limits. Noncoding sequences of the chicken ovalbumin gene furnish an appropriate example of a sequence motif, GAAAATT. Its improbably high frequency and significant periodicity are both absent from the coding sequences of the same gene and from the noncoding sequences of a differently controlled gene in the same organism, the preproinsulin gene. This distribution of a sequence motif is in keeping with the concepts outlined. Low specificity of sequences that bind protein is likely to be compatible with highly specific conformational changes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AmentaP. S., GershI. & GershE. S., 1973. In: I.Gersh (ed.) Submicroscopic Cytochemistry I. Academic Press, New York, pp. 365–375.Google Scholar
  2. 2.
    Artavanis-TsakonasS., SchedlP., MiraultM. E., MoranL. & LisJ., 1979. Cell 17: 9–18.Google Scholar
  3. 3.
    BakA. L. & ZeuthenJ., 1978. Cold Spring Harbor Symp. Quant. Biol. 1977. 42: 367–378.Google Scholar
  4. 4.
    BarnettT. & RaeP. M. M., 1979. Cell 16: 763–775.Google Scholar
  5. 5.
    BeermannW., 1972. In: W.Beermann (ed.) Developmental Studies on Giant Chromosomes. Springer, New York, pp. 1–33.Google Scholar
  6. 6.
    Benyajati, C. & Worcel, A. Cell 9: 393–407.Google Scholar
  7. 7.
    BlakeC. C. F., 1979. Nature 277: 598.Google Scholar
  8. 8.
    BramS., 1975. Biochimie 57: 1301–1306.Google Scholar
  9. 9.
    BramS., BaudyP., Butler-BrowneG. & IbelK., 1974. Biochimie 56: 1339–1341.Google Scholar
  10. 10.
    BridgesC. B., 1938. J. Hered. 29: 11–13.Google Scholar
  11. 10a.
    BrittenR. J. & DavidsonE. H., 1976. Fed. Proc. 35: 2151–2157.Google Scholar
  12. 11.
    CalameK., RogersJ., EarlyP., DavisM., LivantD., WallR. & HoodL., 1980. Nature 284: 452–455.Google Scholar
  13. 12.
    CatinoJ. J., BuschH., DaskalY. & YeomanL. C., 1979. J. Cell Biol. 83: 462–467.Google Scholar
  14. 13.
    CrickF., 1979. Science 204: 264–271.Google Scholar
  15. 14.
    DavidsonE. H. & BrittenR. J., 1979. Science 204: 1052–1059.Google Scholar
  16. 15.
    DickersonR. E., 1971. J. Mol. Evol. 1: 26–45.Google Scholar
  17. 16.
    DicksonE., BoydJ. B. & LairdC. D., 1971. J. Mol. Biol. 61: 615–628.Google Scholar
  18. 17.
    DoolittleW. F. & SapienzaC., 1980. Nature 284: 601–603.Google Scholar
  19. 18.
    Eastman, E. M., Goodman, R. M., Erlanger, B. F. & Miller, O. J., 1977. J. Cell Biol. 27: 149a.Google Scholar
  20. 19.
    EatonW. A., 1980. Nature 284: 183–185.Google Scholar
  21. 20.
    EdenF. C. & HendrickJ. P., 1978. Biochemistry 17: 5838–5844.Google Scholar
  22. 20a.
    ElginS. C. R., SerunianL. A. & SilverL. M., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 839–849.Google Scholar
  23. 21.
    FinchJ. T. & KlugA., 1976. Proc. Natl. Acad. Sci. 73: 1897–1901.Google Scholar
  24. 22.
    FritschE. F., LawnR. M. & ManiatisT., 1980. Cell 19: 959–972.Google Scholar
  25. 23.
    FyrbergE. A., KindleK. L., DavidsonN. & SodjaA., 1980. Cell 19: 365–378.Google Scholar
  26. 24.
    GarelA. & AxelR., 1976. Proc. Natl. Acad. Sci. 73: 3966–3970.Google Scholar
  27. 26.
    GershI., 1973. In: I.Gersh (ed.) Submicroscopic Cytochemistry I. Academic Press, New York, pp. 221–282.Google Scholar
  28. 27.
    GershE. S. & GershI., 1973. In: I.Gersh (ed.) Submicroscopic Cytochemistry I. Academic Press, New York, pp. 163–194.Google Scholar
  29. 27a.
    GilbertW., 1978. Nature 271: 501.Google Scholar
  30. 28.
    GloverD. M. & HognessD. S., 1977. Cell 10: 167–176.Google Scholar
  31. 29.
    GoughN. M., KempD. J., TylerB. M., AdamsJ. M. & CoryS., 1980. Proc. Natl. Acad. Sci. 77: 554–558.Google Scholar
  32. 30.
    GrussP. & KhouryG., 1980. Nature 286: 634–637.Google Scholar
  33. 31.
    HamerD. H. & LederP., 1979. Cell 18: 1299–1302.Google Scholar
  34. 32.
    Igo-KemenesT. & ZachauH. G., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 109–118.Google Scholar
  35. 33.
    JacqC., LazowskaJ. & SlonimskiP. P., 1980. Compt. Rend. Acad. Sci., D, 290: 89–92.Google Scholar
  36. 34.
    KeppelF., AlletB. & EisenH., 1977. Proc. Natl. Acad. Sci. 74: 653–656.Google Scholar
  37. 35.
    KroegerH. & MüllerG., 1973. Exp. Cell Res. 82: 89–94.Google Scholar
  38. 36.
    LauerJ., ShenC. M. J. & ManiatisT., 1980. Cell 20: 119–130.Google Scholar
  39. 37.
    LevyW. B., WongN. C. W. & DixonG. H., 1977. Proc. Natl. Acad. Sci. 74: 2810–2814.Google Scholar
  40. 38.
    LezziM. & RobertM., 1972. Res. Probl. Cell Diff. 4: 35–57.Google Scholar
  41. 39.
    LomedicoP., RosenthalN., EfstratiadisA., GilbertW., KolodnerR., & TizardR., 1979. Cell 18: 545–558.Google Scholar
  42. 41.
    MarsdenM. P. F. & LaemmliU. K., 1979. Cell 17: 849–858.Google Scholar
  43. 42.
    MaurizotJ. C., CharlierM. & HeleneC., 1974. Biochem. Biophys. Res. Comm. 60: 951–957.Google Scholar
  44. 43.
    MayfieldJ. E., SerunianL. A., SilverL. M. & ElginS. C. R., 1978. Cell 14: 539–544.Google Scholar
  45. 43a.
    MiyataT., YasunagaT., Yamawaki-KataokaY., ObataM. & HonjoT., 1980. Proc. Natl. Acad. Sci. 77: 2143–2147.Google Scholar
  46. 44.
    MusichP. R., BrownF. L. & MaioJ. J., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 1147–1160.Google Scholar
  47. 45.
    NunbergJ. H., KaufmanR. J., ChangA. C. Y., CohenS. N. & SchimkeR. T., 1980. Cell 19: 355–364.Google Scholar
  48. 46.
    OrgelL. E. & CrickF., 1980. Nature 284: 604–607.Google Scholar
  49. 47.
    PalmiterR. D., MulvihillE. R., McKnightG. S., & SenearA. W., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’ 42: 639–647.Google Scholar
  50. 48.
    PaulsonJ. R. & LaemmliU. K., 1977. Cell 12: 817–828.Google Scholar
  51. 49.
    PerlerF., EfstratiadisA., LomedicoP., GilbertW., KolodnerR. & DodgsonJ., 1980. Cell 20: 555–566.Google Scholar
  52. 50.
    PrunellA. & KornbergR. D., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 103–108.Google Scholar
  53. 51.
    RenzM., NehlsP. & HozierJ., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 245–252.Google Scholar
  54. 52.
    RobertsonM. A., StadenR., TanakaY., CatterallJ. F., O'MalleyB. W., & BrownleeG. G., 1979. Nature 278: 370–372.Google Scholar
  55. 52a.
    RosbashM., CampoM. S. & GummersonK. S., 1975. Nature 258: 682–686.Google Scholar
  56. 53.
    SakanoH., HuppiK., HeinrichG. & TonegawaS., 1979. Nature 280: 288–294.Google Scholar
  57. 54.
    Schibler, U. Communicated at Fourth Arolla Workshop, EMBO, August 1980.Google Scholar
  58. 55.
    SedatJ. & ManuelidisL., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 331–350.Google Scholar
  59. 56.
    SilverL. M. & ElginS. C. R., 1977. Cell 11: 971–983.Google Scholar
  60. 57.
    SlonimskiP., 1980. Compt. Rend. Acad. Sci. 290: 331–334.Google Scholar
  61. 58.
    SmithM., LeungD. W., GillamS., AstellC. R., MontgomeryD. L. & HallB. D., 1979. Cell 16: 753–762.Google Scholar
  62. 59.
    SorsaV., 1974. Cold Spring Harbor Symp. Quant. Biol. ‘1973’. 38: 601–608.Google Scholar
  63. 60.
    SorsaM. & SorsaV., 1967. Chromosoma 22: 32–41.Google Scholar
  64. 61.
    SorsaM. & SorsaV., 1970. Chromosoma 31: 346.Google Scholar
  65. 62.
    SperlingL. & KlugA., 1977. J. Mol. Biol. 112: 253–263.Google Scholar
  66. 62a.
    StalderJ., GroudineM., DodgsonJ. B., EngelJ. D. & WeintraubH., 1980. Cell 19: 973–980.Google Scholar
  67. 63.
    SuauP., BradburyE. M. & BaldwinJ. P., 1979. Eur. J. Biochem. 97: 593–602.Google Scholar
  68. 64.
    TakahataN. & MaruyamaT., 1979. Proc. Natl. Acad. Sci. 76: 4521–4525.Google Scholar
  69. 65.
    ThomaF. & KollerT., 1977. Cell 12: 101–107.Google Scholar
  70. 66.
    TiemeierD. C., TilghmanS. M., PolskyF. I., SeidmanJ. G., LederA., EdgellM. H. & LederP., 1978. Cell 14: 237–245.Google Scholar
  71. 67.
    VanOoyenA., BergJ.van den, ManteiN. & WeissmanC., 1979. Science 206: 337–344.Google Scholar
  72. 68.
    WeintraubH. & GroudineM., 1976. Science 193: 848–856.Google Scholar
  73. 69.
    WeisbrodS., GroudineM. & WeintraubH., 1980. Cell 19: 289–301.Google Scholar
  74. 70.
    WeisbrodS. & WeintraubH., 1979. Proc. Natl. Acad. Sci. 76: 630–634.Google Scholar
  75. 71.
    WorcelA., 1978. Cold Spring Harbor Symp. Quant. Biol. ‘1977’. 42: 313–324.Google Scholar
  76. 72.
    WuC., 1980. Nature 286: 854–860.Google Scholar
  77. 72a.
    YoungN. S., BenzE. J., KantorJ. A., KretschmerP. & NienhuisA. W., 1978. Proc. Natl. Acad. Sci. 75: 5884–5888.Google Scholar
  78. 73.
    ZuckerkandlE., 1976. J. Mol. Evol. 9: 73–104.Google Scholar
  79. 74.
    ZuckerkandlE., 1978. J. Mol. Evol. 12: 57–89.Google Scholar
  80. 75.
    ZuckerkandlE., 1979. J. Mol. Evol. 14: 311–321.Google Scholar
  81. 76.
    ZuckerkandlE. & PaulingL., 1962. In: M.Kasha and B.Pullman (eds.) Horizons in Biochemistry. Academic Press, New York, pp. 189–225.Google Scholar
  82. 77.
    ZuckerkandlE. & PaulingL., 1965. In: V.Bryson & H. J.Vogel (eds.), Evolving Genes and Proteins, Academic Press, New York, pp. 97–166.Google Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • E. Zuckerkandl
    • 1
  1. 1.Linus Pauling Institute of Science and MedicinePalo AltoUSA

Personalised recommendations