Advertisement

Child's Nervous System

, Volume 7, Issue 3, pp 121–128 | Cite as

Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus

  • Takahito Miyazawa
  • Kiyoshi Sato
Original Papers

Abstract

Using HTX-rats with congenital hereditary hydrocephalus, we used neuropathological methods, including quantitative Golgi study and neurobehavioral evaluation, to investigate the following problems. (1) What kind of damage does congenital hydrocephalus cause to developing brain tissue? (2) How much can the damage be repaired by ventriculoperitoneal shunting if performed at 4 weeks of age, enabling 4-week-old hydrocephalic rats to survive beyond sexual maturation? (3) What is the status of learning ability of long-term surviving rats with arrested shunt-dependent hydrocephalus? The findings of our study suggest that congenital hydrocephalus impairs the development and formation of the dendrites and spines of the cerebrocortical neurons. Following ventriculoperitoneal shunting, we confirmed that rats with arrested shunt-dependent hydrocephalus demonstrated learning disability in a light-darkness discrimination test using a Y-maze. The development of the dendrites and spines of the cerebrocortical neurons seemed to take place to some degree after shunting, but normal spine density could not be restored. Also suggested was a possible relationship between learning disability and a decrease in spine density, i.e., impairment of synaptogenesis.

Key words

Congenital hydrocephalus Rat Synaptogenesis Golgi study Ventriculoperitoneal shunt Learning disability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aghajanian GK, Bloom FE (1967) The formation of synaptic junctions in developing rat brain. A quantitative electron microscopic study. Brain Res 6:716–727Google Scholar
  2. 2.
    Borit A, Sidman RL (1972) New mutant mouse with communicating hydrocephalus and secondary aqueductal stenosis. Acta Neuropathol (Berlin) 21:316–331Google Scholar
  3. 3.
    Chovanes GI, McAllister JP II, Lamperti AA, Salloto AG, Truex RC Jr (1988) Monoamine alterations during experimental hydrocephalus in neonatal rats. Neurosurgery 22:86–91Google Scholar
  4. 4.
    Del Bigio MR, Bruni JE (1988) Changes in periventricular vasculature of rabbit brain following induction of hydrocephalus and after shunting. J Neurosurg 69:115–120Google Scholar
  5. 5.
    Dunnett SB, Low WC, Iversen SD, Stenevi U, Björklund A (1982) Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res 251:335–348Google Scholar
  6. 6.
    Eayrs JT, Goodhead B (1959) Postnatal development of the cerebral cortex in the rat. J Anat 93:385–401Google Scholar
  7. 7.
    Fried A, Shapiro K, Takei F, Kohn I (1987) A laboratory model of shunt-dependent hydrocephalus. Development and biochemical characterization. J Neurosurg 66:734–740Google Scholar
  8. 8.
    Gellermann LW (1933) Chance of orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:207–208Google Scholar
  9. 9.
    Globus A, Scheibel AB (1966) Loss of dendrite spines as an index of presynaptic terminal patterns. Nature 212:463–465Google Scholar
  10. 10.
    Globus A, Scheibel AB (1967) The effect of visual deprivation on cortical neurons: a Golgi study. Exp Neurol 19:331–345Google Scholar
  11. 11.
    Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433Google Scholar
  12. 12.
    Huttenlocher PR (1979) Synaptic density in human frontal cortex — developmental changes and effects of aging. Brain Res 163:195–205Google Scholar
  13. 13.
    Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol (Berlin) 54:211–218Google Scholar
  14. 14.
    Kristt DA (1978) Neuronal differentiation in somatosensory cortex of the rat. I. Relationship to synaptogenesis in the first postnatal week. Brain Res 150:467–486Google Scholar
  15. 15.
    Lewin R (1980) Is your brain really necessary?. Science 210:1232–1234Google Scholar
  16. 16.
    Markus EJ, Petit TL (1987) Neocortical synaptogenesis, aging and behavior: lifespan development in the motor-sensory system of the rat. Exp Neurol 96:262–278Google Scholar
  17. 17.
    Matthies M, Rauca CH, Liebmann H (1974) Changes in the acetylcholine content of different brain regions of the rat during a learning experiment. J Neurochem 23:1109–1113Google Scholar
  18. 18.
    McAllister JP II, Maugans TA, Shah MV, Truex RC Jr (1985) Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776–783Google Scholar
  19. 19.
    Miller M (1981) Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons. J Neurocytol 10:859–878Google Scholar
  20. 20.
    Miyaoka M, Ito M, Wada M, Sato K, Ishii S (1988) Measurement of local cerebral glucose utilization before and after V-P shunt in congenital hydrocephalus in rats. Metab Brain Dis 3:125–132Google Scholar
  21. 21.
    Miyazawa T, Sato K, Nakamura Y, Wada M, Nakagata N, Ishii S (1988) A quantitative Golgi study of cortical pyramidal neurons in congenitally hydrocephalic HTX-rats (in Japanese). Nerv Syst Child 13:263–270Google Scholar
  22. 22.
    Nakayama DK, Harrison MR, Berger MS, Chinn DH, Halks-Miller M, Edwards MS (1983) Correction of congenital hydrocephalus in utero. I. The model: intracisternal kaolin produces hydrocephalus in fetal lambs and rhesus monkeys. J Pediatr Surg 18:331–338Google Scholar
  23. 23.
    Peacock WJ (1986) The postnatal development of the brain and its coverings. In: Raimondi AJ, Choux M, Di Rocco C (eds) Head injuries in the newborn and infant. (Principles of pediatric neurosurgery) Springer, New York Berlin Heidelberg, pp 53–66Google Scholar
  24. 24.
    Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186:1126–1128Google Scholar
  25. 25.
    Raimondi AJ, Soare P (1974) Intellectual development in shunted hydrocephalic children. Am J Dis Child 127:664–671Google Scholar
  26. 26.
    Rubin RC, Hochwald GM, Tiell M, Mizutani H, Ghatak N (1976) Hydrocephalus. I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5:109–114Google Scholar
  27. 27.
    Rubin RC, Hochwald GM, Tiell M, Liwnicz BH (1976) Hydrocephalus. II. Cell number and size, and myelin content of the pre-shunted cerebral cortical mantle. Surg Neurol 5:115–118Google Scholar
  28. 28.
    Rubin RC, Hochwald GM, Tiell M, Epstein F, Ghatak N, Wisniewski H (1976) Hydrocephalus. III. Reconstitution of the cerebral cortical mantle following ventricular shunting. Surg Neurol 5:179–183Google Scholar
  29. 29.
    Schapiro S, Vukovich KR (1970) Early experience effects upon cortical dendrites: a proposed model for development. Science 167:292–294Google Scholar
  30. 30.
    Scheibel ME, Scheibel AB (1978) The methods of Golgi. In: Robertson RT (ed) Neuroanatomical research techniques. Academic Press, New York, pp 89–114Google Scholar
  31. 31.
    Takiguchi H, Ishizuka A, Ikeda Y, Itoh E (1988) The effects of a dibenzoxazepine derivative on learning ability and local cerebral glucose utilization in aged rats (in Japanese). Jpn J Neuropsychopharmacol 10:459–469Google Scholar
  32. 32.
    Venes JL (1983) Management of intrauterine hydrocephalus, in neurosurgical forum. J Neurosurg 58:793Google Scholar
  33. 33.
    Volpe BT, Waczek B, Davis HP (1988) Modified T-maze training demonstrates dissociated memory loss in rats with ischemic hippocampal injury. Behav Brain Res 27:259–268Google Scholar
  34. 34.
    Wada M (1988) Congenital hydrocephalus in HTX-rats: incidence, pathophysiology, and developmental impairment. Neurol Med Chir (Tokyo) 28:955–964Google Scholar
  35. 35.
    Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265Google Scholar
  36. 36.
    Wenzel J, Kammerer E, Joschko R, Joschko M, Kaufmann W, Kirsche W, Matthies H (1977) Der Einfluß eines Lernexperimentes auf die Synapsenanzahl im Hippocampus der Ratte. Elektronenmikroskopische und morphometrische Untersuchumgen. Z Mikrosk Anat Forsch 91:57–73Google Scholar
  37. 37.
    Wenzel J, Kammerer E, Frotscher M, Joschko R, Joschko M, Kaufmann W (1977) Elektronenmikroskopische und morphometrische Untersuchungen an Synapsen des Hippocampus nach Lernexperimenten bei der Ratte. Z Mikrosk Anat Forsch 91:74–93Google Scholar
  38. 38.
    Young HF, Nulsen FE, Weiss MH, Thomas P (1973) The relationship of intelligence and cerebral mantle in treated infantle hydrocephalus (IQ potential in hydrocephalic children). Pediatrics 52:38–44Google Scholar
  39. 39.
    Zilles K, Wree A (1985) Cortex: areal and laminar structure. In: George P (ed) The rat nervous system, vol 1. Academic Press, Australia, pp 375–415Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Takahito Miyazawa
    • 1
  • Kiyoshi Sato
    • 1
  1. 1.Department of NeurosurgeryJuntendo University, School of MedicineTokyoJapan

Personalised recommendations