Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men

  • S. Aunola
  • H. Rusko
Article

Summary

The reproducibility of the aerobic (AerT) and the anaerobic (AnT) threshold was studied in 33 men aged 20–50 years. They completed two maximal exercise tests on a bicycle ergometer. The thresholds, as\(\dot V_{O_2 }\) (l·min−1), were determined visually by two investigators using both the blood lactate and the respiratory indices. The respiratory variables were measured with a computerized breath-by-breath method; samples of venous blood were drawn every 2nd min and analysed enzymatically for lactate. The reproducibility of the AerT (r=0.94) and of the AnT (r=0.96) were equally good. The AnT can be determined either from blood lactate concentrations (AnTLa) or from ventilatory and gas exchange response (AnTr) during a 2-min incremental exercise test. They both also showed similar reproducibility:r=0.93 for the AnTLa andr=0.95 for the AnTr. The work rate and the measured physiological variables at the AerT and AnT, except for the blood lactacte concentration, were very reproducible. Age did not affect the reproducibility of the thresholds. The poor reproducibility of blood lactate concentration of the AnT confirmed our previous opinion that the fixed blood lactate levels of 2 and 4 mmol·l−1 are poor indicators of AerT and AnT.

Key words

Aerobic threshold Anaerobic threshold Incremental exercise Lactic acid Ventilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aunola S, Rusko H (1982) The anaerobic threshold measured by four different bicycle exercise tests. Scand J Sports Sci 4: 49–56Google Scholar
  2. Borg G (1962) Physical performance and perceived exertion. Thesis, University of Lund, SwedenGoogle Scholar
  3. Borg G (1973) Perceived exertion: A note on “history” and methods. Med Sci Sports 5: 90–93Google Scholar
  4. Buchberger J (1979) Anwendung der Blutgasanalyse bei Bewertung der DauerleistungsfÄhigkeit von Holzhauern. Int Arch Occup Environ Health 44: 45–53Google Scholar
  5. Davis JA, Frank MH, Whipp BJ, Wasserman K (1979) Anaerobic threshold alterations caused by endurance training in middle-aged men. J Appl Physiol: Respirat Environ Exercise Physiol 46: 1039–1046Google Scholar
  6. Davis JA, Vodak P, Wilmore JH, Vodak J, Kurtz P (1976) Anaerobic threshold and maximal aerobic power for three modes of exercise. J Appl Physiol 41: 544–550Google Scholar
  7. Finch CA, Gollnick PD, Hlastala MP, Miller LR, Dillmann E, Mackler B (1979) Lactic acidosis as a result of iron deficiency. J Clin Invest 64: 129–137Google Scholar
  8. Finch CA, Miller LR, Inamdar AR, Person R, Seiler K, Mackler B (1976) Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest 58: 447–453Google Scholar
  9. Gollnick PD, Pernow B, Essen B, Jansson E, Saltin B (1981) Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clin Physiol 1: 27–42Google Scholar
  10. Heigenhauser GJF, Sutton JR, Jones NL (1983) Effect of glycogen depletion on the ventilatory response to exercise. J Appl Physiol: Respirat Environ Exercise Physiol 54: 470–474Google Scholar
  11. Ivy JL, Costill DL, Van Handel PJ, Essig DA, Lower RW (1981) Alteration in the lactate threshold with changes in substrate availability. Int J Sports Med 2: 139–142Google Scholar
  12. Jansson E (1980) Diet and muscle metabolism in man with reference to fat and carbohydrate utilization and its regulation. Acta Physiol Scand [Suppl] 487: 1–24Google Scholar
  13. Kelman GR, Maughan RJ, Williams C (1975) The effect of dietary modifications on blood lactate during exercise. J Physiol 251: 34–35PGoogle Scholar
  14. Keul J, Simon G, Berg A, Dickhuth H-H, Goerttler I, Kübel R (1979) Bestimmung der individuellen anaeroben Schwelle zur Leistungsbewertung und Trainingsgestaltung. Dtsch Z Sportmed 30: 212–218Google Scholar
  15. Kindermann W, Simon G, Keul J (1978) Dauertraining — Ermittlung der optimalen Trainingsherzfrequenz und LeistungsfÄhigkeit. Leistungssport 8: 34–39Google Scholar
  16. Kindermann W, Simon G, Keul J (1979) The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42: 25–34Google Scholar
  17. Maughan RJ, Williams C, Campbell DM, Hepburn D (1978) Fat and carbohydrate metabolism during low intensity exercise: Effects of the availability of muscle glycogen. Eur J Appl Physiol 39: 7–16Google Scholar
  18. Nemoto I, Miyashita M (1980) Aerobic and anaerobic threshold of Japanese male adults. J Hum Ergol 9: 183–189Google Scholar
  19. Ohira Y, Edgerton VR, Gardner GW, Gunawardena KA, Senewiratne B, Ikawa S (1981) Work capacity after iron treatment as a function of hemoglobin and iron deficiency. J Nutr Sci Vitaminol 27: 87–96Google Scholar
  20. Orr GW, Green HJ, Hughson RL, Bennett GW (1982) A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol: Respirat Environ Exercise Physiol 52: 1349–1352Google Scholar
  21. Ready AE, Quinney HA (1982) Alterations in anaerobic threshold as the result of endurance training and detraining. Med Sci Sports Exerc 14: 292–296Google Scholar
  22. Reinhard U, Müller PH, Schmülling R-M (1979) Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration 38: 36–42Google Scholar
  23. Reiterer W, Bachl N (1977) Kriterien der körperlichen LeistungsfÄhigkeit: Limitierende Faktoren und diagnostische Kriterien des Ausdauerleistungsvermögens. Wien Med Wochenschr [Suppl] 42: 1–19Google Scholar
  24. Rusko H, Rahkila P, Karvinen E (1980) Anaerobic threshold, skeletal muscle enzymes and fiber composition in young female cross-country skiers. Acta Physiol Scand 108: 263–268Google Scholar
  25. Sady S, Katch V, Freedson P, Weltman A (1980) Changes in metabolic acidosis: Evidence for an intensity threshold. J Sports Med Phys Fitness 20: 41–46Google Scholar
  26. Salminen R, Aunola S, MÄlkiÄ E, Vuori I (1982) Computerized breath-by-breath analysis of respiratory variables during exercise. Med Prog Technol 9: 27–32Google Scholar
  27. Saltin B (1964a) Aerobic and anaerobic work capacity after dehydration. J Appl Physiol 19: 1114–1118Google Scholar
  28. Saltin B (1964b) Circulatory response to submaximal and maximal exercise after thermal dehydration. J Appl Physiol 19: 1125–1132Google Scholar
  29. Simon G, Berg A, Dickhuth H-H, Simon-Alt A, Keul J (1981) Bestimmung der anaeroben Schwelle in AbhÄngigkeit vom Alter und von der LeistungsfÄhigkeit. Dtsch Z Sportmed 32: 7–14Google Scholar
  30. Skinner JS, McLellan TM (1980) The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 51: 234–248Google Scholar
  31. Stegmann H, Kindermann W (1981) Bestimmung der individuellen anaeroben Schwelle bei unterschiedlich Ausdauertrainierten aufgrund des Verhaltens der Lactatkinetik wÄhrend der Arbeits- und Erholungsphase. Dtsch Z Sportmed 32: 213–221Google Scholar
  32. Stegmann H, Kindermann W (1982) Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol·l−1 lactate. Int J Sports Med 3: 105–110Google Scholar
  33. Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61: 331–338Google Scholar
  34. Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35: 236–243Google Scholar
  35. Williams CG, Wyndham CH, Kok R, von Rahden MJE (1967) Effect of training on maximum oxygen uptake and on anaerobic metabolism in man. Int Z Angew Physiol 24: 18–23Google Scholar
  36. Withers RT, Sherman WM, Miller JM, Costill DL (1981) Specificity of the anaerobic threshold in endurance trained cyclists and runners. Eur J Appl Physiol 47: 93–104Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • S. Aunola
    • 1
    • 2
  • H. Rusko
    • 1
    • 2
  1. 1.The Rehabilitation Research Centre of the Social Insurance InstitutionTurku 72Finland
  2. 2.Department of Biology of Physical ActivityUniversity of JyvÄskylÄJyvÄskylÄFinland

Personalised recommendations