Oecologia

, Volume 75, Issue 4, pp 575–579

Phenolic and mineral content of leaves influences decomposition in European forest ecosystems

  • Volker Nicolai
Original Papers

Summary

Factors influencing decomposition in European forests growing on different soils were studied in stands dominated by the European beechFagus sylvatica L. Phenolic contents of freshly fallen leaves ofF. sylvatica growing on nutrient-poor soils (acid sandy soil) were higher than those of similar leaves on nutrient-rich soils (calcareous mull soil). Analysis of fallen leaves of different ages showed rapid decay of phenolics during the first winter on the ground. After 1 year the phenolic content of leaves ofF. sylvatica growing on nutrient-poor soils was still twice as high as in similar leaves on nutrient-rich soils. Field and laboratory experiments showed that a major decomposer (Oniscus asellus, Isopoda) preferred leaves from trees on nutrient-rich soils. Mineral contents of leaves ofF. sylvatica growing on different soils differed: on rich soils leaves had higher contents of Ca, Mg, Na, and K. These elements are important nutrients for decomposers. The distribution of major decomposers reflects the mineral content of their diet, which in turn reflects soil type. Different rates of leaf turnover and nutrient turnover in different forest ecosystems (even when the same tree species is dominant) are due to the decomposing system, which is influenced by the phenolic and mineral contents of the leaves.

Key words

Forest Decomposition Phenolic Mineral content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alongi DM (1987) The influence of mangrove-derived tannins on interidal meiobenthos in tropical estuaries. Oecologia 71:537–540CrossRefGoogle Scholar
  2. Beck L (1984): Bodentiere im Laub des Buchenwaldes. Forschung Mitteilungen der DFG 2:15–18Google Scholar
  3. Berg B, Hannus K, Popoff T, Theander O (1980): Chemical components of Scots pine needles and needle litter and inhibition of fungal species by extractives. Ecol Bull 32:391–400Google Scholar
  4. Berger-Landefeldt U (1960): Zum Cellulose-Abbau in Böden unter verschiedenem Bewuchs. Oikos 11: II:311–324Google Scholar
  5. Bernays EA (1978): Tanmns: an alternative viewpoint. Ent Ex et Appl 24:244–253Google Scholar
  6. Bernays EA, Chamberlain DJ, Woodhead S (1983): Phenols as nutrients for a phytophagous insect,Anacridium melanorhodon. J Insect Physiol 29(6):535–539CrossRefGoogle Scholar
  7. Cates RG, Rhoades DF (1977): Patterns in the production of antiherbivore chemical defences in plant communities. Biochem Syst Ecol 5:185–193Google Scholar
  8. Chapin FSIII, McKendrick JD, Johnson DA (1986): Seasonal changes in carbon fractions in alascan tundra plants of different growth form: implications for herbivory. J An Ecol 74:707–731Google Scholar
  9. Choo GM, Waterman PG, MacKey DB, Gartlan JS (1981): A simple enzyme assay for dry matter digestibility and its value in studying food selection by generalist herbivores. Oecologia 49:170–178CrossRefGoogle Scholar
  10. Ellenberg H (1982): Vegetation Mitteleuropas mit den Alpen. 3. Edition Ulmer, Stuttgart, 989 ppGoogle Scholar
  11. Ellenberg H, Mayer R, Schauermann J (eds) (1986): Ergebnisse des Sollingprojekts 1966–1986. Ulmer, Stuttgart, 507 ppGoogle Scholar
  12. Feeny PP (1969): Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin. Phytochem 8:2119–2126CrossRefGoogle Scholar
  13. Feeny PP (1970): Seasonal changes in oak leaf tannins and nutrient as a cause of spring feeding by winter moth caterpillar. Ecology 51:565–581Google Scholar
  14. Feeny PP, Bostock H (1968): Seasonal changes in the tannin content of oak leaves. Phytochem 7:871–880CrossRefGoogle Scholar
  15. Gartlan JS, Waterman PG, MacKey DB, Mbi CN, Struhsaker TT (1980): A comparative study of the phytochemistry of two african rain forests. Biochem Syst Ecol 8:401–422Google Scholar
  16. Griffiths DW, Jones DIH (1977): Cellulase inhibition by tannins in the testa of field beans (Vicia faba). J Sci Fd Agric 28:983–989Google Scholar
  17. Haukioja E, Niemelä P, Siren S (1985): Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in mountain birchBetula pubescens ssp.tortuosa. Oecologia 65:214–222Google Scholar
  18. Herlitzius H (1983): Biological decomposition efficiency in different woodland soils. Oecologia 57:78–97CrossRefGoogle Scholar
  19. Herlitzius R, Herlitzius H (1977): Streuabbau in Laubwäldern. Oecologia 30:147–171CrossRefGoogle Scholar
  20. Hitzfeld B (1985): Die Phenole — Ihre Rolle als Frasschutz und bei der Fallaubzersetzung. Thesis, University of MarburgGoogle Scholar
  21. Jeffrey DW (1987): Soil-plant relationships an ecological approach. Croom Helm Ltd 295 ppGoogle Scholar
  22. Levin DA (1971): Plant phenolics: an ecological perspective. Am Nat 105:157–181Google Scholar
  23. MacKey DB, Waterman PO, Mbi CN, Gartlan JS, Struhsaker TT (1978): Phenolic content of vegetation in two African rain forests: ecological implications. Science 202:61–64Google Scholar
  24. MacLean SF, Jensen TS (1985): Food plant selection by insect herbivores in Alaskan arctic tundra: the role of plant life form. Oikos 44:211–221Google Scholar
  25. Manuwuto S, Scriber JM (1986): Effects of hydrolysable and condensed tannin on growth and development of two species of polyphagous Lepidoptera:Spodoptera eridania andCallosomia promethea. Oecologia 69:225–230Google Scholar
  26. Martin JS, Martin MM (1982): Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205–211CrossRefGoogle Scholar
  27. Martin JS, Martin MM (1983): Tannin assays in ecological studies. Precipitation of Ribulose 1,5 biphosphate Carboxylase/Oxygenase by tannic acid, Querebrancho, and oak foliage extracts. J Chem Ecol 9(2):285–294CrossRefGoogle Scholar
  28. Martin JS, Martin MM, Bernays EA (1987): Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implication for theories of plant defense. J Chem Ecol 13(3):605–621CrossRefGoogle Scholar
  29. Mole S, Waterman PG (1987a): A critical analysis of techniques for measuring tannins in ecological studies I. Techniques for chemically defining tannins. Oecologia 72:137–147Google Scholar
  30. Mole S, Waterman PG (1987b): A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia 72:148–156Google Scholar
  31. Nicolai V (1986): The bark of trees: thermal properties, microclimate and fauna. Oecologia 69:148–160CrossRefGoogle Scholar
  32. Palo RT, Sunnerheim K, Theander O (1985): Seasonal variation of phenols, crude protein and cell wall content of birch (Betula pendula Roth.) in relation to ruminant in vitro digestibility. Oecologia 65:314–318CrossRefGoogle Scholar
  33. Reichle DE (ed) (1973): Analysis of temperate forest ecosystems. Ecol Studies Vol 1, Springer, Heidelberg, New York, 304 ppGoogle Scholar
  34. Remmert H (1984): Ökologie — Ein Lehrbuch. Springer, Heidelberg, New York, 334 ppGoogle Scholar
  35. Remmert H (1985): Was geschieht im Klimax-Stadium? Naturwiss. 72:505–512Google Scholar
  36. Remmert H (1987): Pflanzen und Pflanzenfresser — Der Wettlauf zum Überleben. Verh Ges dtsch Naturforsch und Ärzte 114:409–429Google Scholar
  37. Rosenthal GA (1986): The chemical defenses of higher plants. Scient Am 254(1):76–81Google Scholar
  38. Rushton SP, Hassall M (1983): Food and feeding rates of the terrestrial isopodArmadillidium vulgare (Latr.). Oecologia 57:415–419Google Scholar
  39. Sachs L (1969): Statistische Auswertungsmethoden. Springer, Heidelberg, New York, 2. edition 677 ppGoogle Scholar
  40. Staaf H (1987): Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia 72:58–64CrossRefGoogle Scholar
  41. Swain T (1979). Tannins and Lignins. In: Rosenthal GA, Janzen DH (eds): Herbivores. Their interactions with secondary plant metabolites. Acad Press, pp 657–682Google Scholar
  42. Tahvanainen J, Helle E, Julkunen-Tiitto R, Lavola A (1985): Phenolic compounds of willow bark as deterrents against feeding by mountain hare. Oecologia 65:319–323CrossRefGoogle Scholar
  43. Thiele HU (1968): Bodentiere und Bodenfruchtbarkeit. Organ Landbau 1:6–8+2:29–31Google Scholar
  44. Tuomi J, Niemelä P, Haukioja E, Siren S, Neuvonen S (1984): Nutrient stress: an explanation for plant anti-herbivore responses to defoliation. Oecologia 61:208–210CrossRefGoogle Scholar
  45. Waring RH, McDonald AJS, Larsson S, Ericsson T, Wiren A, Arwidsson E (1985): Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrients. Oecologia 66:157–160CrossRefGoogle Scholar
  46. Wisdom CS, Gonzalez-Coloma A, Rundel PW (1987): Ecologial tannin assays. Evalation of proanthocyanidins, protein binding assays and protein precipitating potential. Oecologia 72:395–401CrossRefGoogle Scholar
  47. Zucker WV (1983): Tannins: does structure determine function? Am Nat 121:335–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Volker Nicolai
    • 1
  1. 1.Fachbereich Biologie/ZoologiePhilipps-UniversityMarburgFederal Republik of Germany

Personalised recommendations