Journal of Wood Science

, 46:343 | Cite as

Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of measuring techniques

  • Seppo Andersson
  • Ritva Serimaa
  • Mika Torkkeli
  • Timo Paakkari
  • Pekka Saranpää
  • Erkki Pesonen
Original Article


The structure of cellulose, especially the microfibril angles (MFAs), in compression wood of Norway spruce [Picea abies (L.) Karst.] was studied by wide- and small-angle X-ray scattering and polarizing microscopy. On the basis of the X-ray scattering experiments the average MF As of the cell wall layers S2 and S1 of the studied sample are 39‡ and 89‡, respectively; and the average diameter and length of the cellulose crystallites are 2.9 and 20.0nm, respectively. The average of the whole MFA distribution is shown to agree with the one obtained by polarizing microscopy of macerated fibers.

Key words

Microfibril angle Wide angle X-ray scattering Small-angle X-ray scattering Wood cellulose Picea abies (L.) Karst 


  1. 1.
    Harris JM, Meylan BA (1965) The influence of microfibril angle on longitudinal and tangential shrinkage inPinus radiata. Holzforschung 19(5):144–153CrossRefGoogle Scholar
  2. 2.
    Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278CrossRefGoogle Scholar
  3. 3.
    Leney L (1981) A technique for measuring fibril angle using polarized light. Wood Fiber 13(1):13–16Google Scholar
  4. 4.
    Donaldson LA (1991) The use of pit apertures as windows to measure microfibril angle in chemical pulp fibers. Wood Fiber Sci 23:290–295Google Scholar
  5. 5.
    DeLuca LB, Orr RS (1961) Crystallite orientation and spiral structure of cotton. J Polym Sci 54:457–470CrossRefGoogle Scholar
  6. 6.
    Cave ID (1966) Theory of X-ray measurement of microfibril angle in wood. For Prod J 16(10):37–42Google Scholar
  7. 7.
    Boyd JD (1977) Interpretation of X-ray diffractograms of wood for assessments of microfibril angles in fibre cell walls. Wood Sci Technol 11:93–114CrossRefGoogle Scholar
  8. 8.
    Sobue N, Hirai N, Asano I (1971) Studies on structure of wood by X-ray. II. Estimation of the orientation of micells in cell wall. J Jpn Wood Res Soc 17(2):44–50Google Scholar
  9. 9.
    Paakkari T, Serimaa R (1984) A study of the structure of wood cells by X-ray diffraction. Wood Sci Technol 18:79–85Google Scholar
  10. 10.
    Cave ID (1997) Theory of X-ray measurement of microfibril angle in wood. Wood Sci Technol 31:225–234CrossRefGoogle Scholar
  11. 11.
    Wardrop AB (1952) The low-angle scattering of X-rays by conifer tracheids. Textile Res J 22:288–291CrossRefGoogle Scholar
  12. 12.
    Kantola M, Seitonen S (1961) X-ray orientation investigations. Ann Acad Sci Fenn A VI Phys 80:1–15Google Scholar
  13. 13.
    Kantola M, Kähkönen H (1963) Small-angle X-ray investigation. Ann Acad Sci Fenn A VI Phys 137:1–14Google Scholar
  14. 14.
    Kantola M, Kähkönen H, Seitonen S (1965) On the correspondence of the small-angle and wide-angle X-ray diffraction patterns of wood fibers. Ann Acad Sci Fenn A VI Phys 220:1–9Google Scholar
  15. 15.
    Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study ofPicea abies. J Struct Biol 113:13–22CrossRefGoogle Scholar
  16. 16.
    Lichtenegger H, Reiterer A, Tschegg S, Fratzl P (1998) Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. In: Butterfield BG (ed) Microfibril angle in wood. University of Canterbury, Christchurch, pp 140–156Google Scholar
  17. 17.
    Reiterer A, Jakob HF, Stanzl-Tschegg SE, Fratzl P (1998) Spiral angle of elementary cellulose fibrils in cell walls ofPicea abies determined by small-angle X-ray scattering. Wood Sci Technol 32:335–345CrossRefGoogle Scholar
  18. 18.
    Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril inPicea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787CrossRefGoogle Scholar
  19. 19.
    Heyn ANJ (1955) Small particle X-ray scattering by fibers; size and shape of microcrystallites. J Appl Phys 26:519–526CrossRefGoogle Scholar
  20. 20.
    Timell TE (1986) Compression wood in gymnosperms (vol 1). Springer, Berlin, pp 157–167, 195–198Google Scholar
  21. 21.
    Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  22. 22.
    Franklin GL (1945) Preparation of thin sections of synthetic resins and wood resin composites and a new macerating method for wood. Nature 155:51CrossRefGoogle Scholar
  23. 23.
    Jakob HF, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell wall structure inPicea abies: a small-angle X-ray scattering study. Macromolecules 29:8435–8440CrossRefGoogle Scholar
  24. 24.
    Schmidt PW (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Cryst 24:414–435CrossRefGoogle Scholar
  25. 25.
    Müller M, Czihak C, Vogl G, Fratzl P, Schober H, Riekel C (1992) Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–3957CrossRefGoogle Scholar
  26. 26.
    Prud'homme RE, Noah J (1975) Determination of fibril angle distribution in wood fibers: a comparison between the X-ray diffraction and the polarized microscope methods. Wood Fibers 6:282–289Google Scholar
  27. 27.
    Huang C-L, Kutscha NP, Leaf GJ, Megraw RA (1998) Comparation of microfibril angle measurement techniques. In: Butterfield BG (ed) Microfibril angle in wood. University of Canterbury, Christchurch, pp 177–205Google Scholar
  28. 28.
    Saranpää P, Serimaa R, Andersson S, Pesonen E, Suni T, Paakkari T (1998) Variation of microfibril angle of Norway spruce (Pinus abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) — comparing X-ray diffraction and optical methods. In: Butterfield BG (ed) Microfibril angle in wood. University of Canterbury, Christchurch, pp 240–252Google Scholar
  29. 29.
    Sahlberg U, Salmén L, Oscarsson A (1997) The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis. Wood Sci Technol 31:77–86Google Scholar
  30. 30.
    Saranpää P, Pesonen E, Sarén M, Andersson S, Siiriä S, Serimaa R, Paakkari T (in press) Variation on the properties of tracheids in Norway spruce (Picea abies (L.) Karst). In: Savidge R, Barnett J, Napier R (eds) Cambium: the biology of wood formation. BIOS Scientific, OxfordGoogle Scholar

Copyright information

© The Japan Wood Research Society 2000

Authors and Affiliations

  • Seppo Andersson
    • 1
  • Ritva Serimaa
    • 1
  • Mika Torkkeli
    • 1
  • Timo Paakkari
    • 1
  • Pekka Saranpää
    • 2
  • Erkki Pesonen
    • 2
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Forest Research Institute METLAVantaaFinland

Personalised recommendations