Strength of Materials

, Volume 23, Issue 1, pp 86–91 | Cite as

Mechanical behavior of zirconium dioxide crystals partially stabilized with yttrium oxide

  • G. A. Gogotsi
  • A. V. Drozdov
  • V. G. Peichev
Scientific-Technical Section


The results are given of a composite investigation of the mechanical behavior of single crystals of zirconium dioxide partially stabilized with yttrium oxide and ytterbium oxide at temperatures up to 1400°C. It is shown that the elastic modulus of these materials lies in the 150–350 GPa range and their tensile strengths may reach 1,688 MPa. These materials have a nonincreasing relationship of the stress intensity factor to crack length (flat R-curves). The stress intensity factors determined on specimens with a sharp crack are significantly lower than on specimens with a notch. The picture of fracture of single crystals in penetration of an indentor, etc. differs significantly in relation to the stabilizing addition.


Oxide Dioxide Zirconium Tensile Strength Elastic Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    “Temperature dependence of strength and fracture toughness of ZrO2 single crystals,” J. Am. Ceram. Soc., No. 9, 150–152 (1983).Google Scholar
  2. 2.
    D. Michel, L. Mazerolles, and M. Jorba, “Fracture of metastable tetragonal zirconia crystals,” J. Mater. Sci.,18, No. 11, 26–28 (1983).Google Scholar
  3. 3.
    R. P. Ingel, D. Hevis, B. A. Bender, and R. W. Rice, “Physical, microstructural and thermomechanical properties of a ZrO2 single crystal,” Science and Technology of Zirconia, Vol. 12 (1984), pp. 408–414.Google Scholar
  4. 4.
    D. J. Creen, R. H. J. Hannink, and M. V. Swain, Transformation Toughening of Ceramics, CRC Press, Florida (1989).Google Scholar
  5. 5.
    R. P. Ingel and D. Lewis, “Elastic anisotropy in zirconia single crystals,” J. Am. Ceram, Soc.,71, No. 4, 265–271 (1988).Google Scholar
  6. 6.
    A. V. Virkar and R. L. K. Matsumoto, “Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia,” ibid.,10, No. 3, 224–226 (1986).Google Scholar
  7. 7.
    K. Strelov, V. G. Peichev, S. Yu. Pliner, et al., “The properties of partially stabilized zirconium dioxide,” Ogneupory, No. 8, 5–6 (1988).Google Scholar
  8. 8.
    G. A. Gogotsi, “Problems of certification of machine building ceramics for their strength indices,” Vestn. Mashinostr., No. 18, 50–52 (1989).Google Scholar
  9. 9.
    G. A. Gogotsi, A. V. Drozdov, and M. V. Svein, “The strength, crack resistance, and acoustic emission of ZrO2-base ceramic,” Probl. Prochn., No. 1, 34–44 (1991).Google Scholar
  10. 10.
    I. F. Usatikov, E. I. Zoz, R. E. Vol'fson, et al., “Partially stabilized zirconium dioxide-base ceramics,” Ogneupory, No. 5, 17–20 (1990).Google Scholar
  11. 11.
    G. A. Gogotsi, Yu. I. Komolikov, D. Yu. Ostrovoi, et al., “The strength and crack resistance of a zirconium dioxide-base ceramic,” Probl. Prochn., No. 1, 50–52 (1988).Google Scholar
  12. 12.
    G. A. Gogotsi, V. P. Zavada, A. I. Fesenko, et al., The Crack Resistance of a Zirconium Dioxide-Base Ceramic [in Russian], Deposited in the All-Union Institute for Scientific and Technical Information 4/25/89, No. 2690 V-89.Google Scholar
  13. 13.
    T. R. Lai, C. L. Hogg, and M. V. Swain, “Evaluation of fracture toughness and R-curve behavior of Y-TZP ceramics,” ICIJ Intern., No. 3, 240–245 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • G. A. Gogotsi
    • 1
    • 2
  • A. V. Drozdov
    • 1
    • 2
  • V. G. Peichev
    • 1
    • 2
  1. 1.Institute of Strength ProblemsAcademy of Sciences of the Ukrainian SSRKiev
  2. 2.The All-Union Scientific-Research Institute for Power in Nonferrous MetallurgySverdlovsk

Personalised recommendations