Catalysis Letters

, Volume 20, Issue 3–4, pp 259–268 | Cite as

An EXAFS study of Cu/ZnO and Cu/ZnO-Al2O3 methanol synthesis catalysts

  • T. Arunarkavalli
  • G. U. Kulkarni
  • C. N. R. Rao


Cu K-absorption edge and EXAFS measurements on binary Cu/ZnO and ternary Cu/ ZnO-Al2O3 catalysts of varying compositions on reduction with hydrogen at 523 K, show the presence of Cu microclusters and a species of Cu1+ dissolved in ZnO apart from metallic Cu and Cu2O. The proportions of different phases critically depend on the heating rate especially for catalysts of higher Cu content. Accordingly, hydrogen reduction with a heating rate of 10 K/min predominantly yields the metal species (>50%), while a slower heating rate of 0.8 K/min enhances the proportion of the Cu1+ species (∼ 60%). Reduced Cu/ZnO-Al2O3 catalysts show the presence of metallic Cu (upto 20%) mostly in the form of microclusters and Cu1+ in ZnO as the major phase (∼ 60%). The addition of alumina to the Cu/ZnO catalyst seems to favour the formation of Cu1+/ZnO species.


EXAFS XANES methanol synthesis catalysts Cu/ZnO Cu/ZnO-Al2O3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Natta, Catalysis 3 (1955) 349.Google Scholar
  2. [2]
    K. Klier, Adv. Catal. 31 (1982) 243.Google Scholar
  3. [3]
    K. Klier, V. Chatikavanij and R.G. Herman, J. Catal. 74 (1982) 343.Google Scholar
  4. [4]
    Y. Okamoto, K. Fukino, T. Imanaka and S. Teranishi, J. Phys. Chem. 87 (1983) 3740, 3747.Google Scholar
  5. [5]
    R.G. Herman, K. Klier, G.W. Simmons, B.P. Finn, J.B. Bulko and T.P. Kobylinski, J. Catal. 56 (1979) 407.Google Scholar
  6. [6]
    S. Mehta, G.W. Simmons, K. Klier and R.G. Herman, J. Catal. 57 (1979) 339.Google Scholar
  7. [7]
    J.B. Bulko, R.G. Herman, K. Klier and G.W. Simmons, J. Phys. Chem. 83 (1979) 3118.Google Scholar
  8. [8]
    B.S. Clausen, B. Lengeler and B.S. Rasmussen, J. Phys. Chem. 89 (1985) 2319.Google Scholar
  9. [9]
    G. Sankar, S. Vasudevan and C.N.R. Rao, J. Chem. Phys. 85 (1986) 2291.Google Scholar
  10. [10]
    L.S. Kau, K.O. Hodgson and E.I. Solomon, J. Am. Chem. Soc. 111 (1989) 7103.Google Scholar
  11. [11]
    B.S. Clausen, G. Steffensen, B. Fabius, J. Villadsen, R. Feidenhans'l and H. Topsoe, J. Catal. 132 (1991) 524.Google Scholar
  12. [12]
    D. Duprez, Z. Ferhat-Hamida and M.M. Bettahar, J. Catal. 124 (1990) l.Google Scholar
  13. [13]
    G.U. Kulkarni, G. Sankar and C.N.R. Rao, J. Catal. 131 (1991) 491.Google Scholar
  14. [14]
    G.U. Kulkarni, G. Sankar and C.N.R. Rao, Z. Phys. B 7 (1989) 529.Google Scholar
  15. [15]
    P.A. Montano, G.K. Shenoy, E.E. Alp, W. Schulze and J. Urban, Phys. Rev. Lett. 56 (1986) 2076.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • T. Arunarkavalli
    • 1
  • G. U. Kulkarni
    • 1
  • C. N. R. Rao
    • 1
  1. 1.Solid State and Structural Chemistry Unit and CSIR Centre of Excellence in ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations