Advertisement

Catalysis Letters

, Volume 10, Issue 5–6, pp 365–373 | Cite as

Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts

  • M. J. Kappers
  • J. H. van der Maas
Article

Abstract

The infrared stretching frequencies of linear-bonded carbon monoxide on face, edge and corner atoms have been identified with four platinum catalysts. The metal particles were supported on different absorbentia and each having a different average particle size, ranging from about 10 to 200 Å. The\(\tilde v_{CO}\) values of the various absorption bands correlate linearly with the number of nearest neighbours of the different surface sites (n in C n ). Effects of an interaction between Pt clusters and support on the linear-CO stretching frequency have not been observed. This empirical correlation between\(\tilde v_{CO}\) and Cn, and the advantages ofin situ Diffuse Reflectance Fourier transform Infrared Spectroscopy in combination with derivative spectrometry opens the possibility to monitor the dispersity of supported platinum in a simple and relatively quick way.

Keywords

FTIR spectroscopy diffuse reflectance supported platinum CO adsorption metal coordination number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Sheppard and T.T. Nguyen, in:Advances in Infrared and Raman Spectroscopy, eds. R.G.H. Clark and R.E. Hester, Vol. 5 (Heyden, London, 1978) Ch. 2.Google Scholar
  2. [2]
    R.G. Greenler, K.D. Burch, K. Kretzschmar, R. Klauser, A.M. Bradshaw and B.E. Hayden, Surf. Sci. 152/153 (1985) 338.Google Scholar
  3. [3]
    D.M. Haaland, Surf. Sci. 185 (1987) 1.Google Scholar
  4. [4]
    R. Barth, R. Pitchai, R.L. Anderson and X.E. Verykios, J. Catal. 116 (1989) 61.Google Scholar
  5. [5]
    R. Barth and A. Ramachandran, J. Catal. 125 (1990) 467.Google Scholar
  6. [6]
    L.M. Kustov, D. Ostgard and W.M.H. Sachtler, Catal. Lett. 9 (1991) 121.Google Scholar
  7. [7]
    A.A. Solomennikov, Y.A. Lokhov, A.A. Davidov and Y.A. Ryndin, Kin. Katal. 20 (1979) 714.Google Scholar
  8. [8]
    R. van Hardeveld and F. Hartog, Surf. Sci. 15 (1969) 189.Google Scholar
  9. [9]
    W.F. Maddams and W.L. Mead, Spectrochim. Acta 38A (1982) 437.Google Scholar
  10. [10]
    S. Hawkes, W.F. Maddams, W.L. Mead and M.J. Southon, Spectrochim. Acta 38A (1982) 445.Google Scholar
  11. [11]
    W.F. Maddams and M.J. Southon, Spectrochim. Acta 38A (1982) 445.Google Scholar
  12. [12]
    M.J. Kappers and J.H. van der Maas, to be published.Google Scholar
  13. [13]
    M.J. Kappers and J.H. van der Maas, to be published.Google Scholar
  14. [14]
    G.C. Bond and P.B. Wells, Appl. Catal. 18 (1985) 221.Google Scholar
  15. [15]
    G.C. Bond and P.B. Wells, Appl. Catal. 18 (1985) 225.Google Scholar
  16. [16]
    J.W. Geus and P.B. Wells, Appl. Catal. 18 (1985) 231.Google Scholar
  17. [17]
    A. Frennet and P.B. Wells, Appl. Catal. 18 (1985) 243.Google Scholar
  18. [18]
    P.B. Wells, Appl. Catal. 18 (1985) 259.Google Scholar
  19. [19]
    G.C. Bond, F. Garin and G. Maire, Appl. Catal. 41 (1988) 313.Google Scholar
  20. [20]
    V. Gnutzmann and W. Vogel, J. Phys. Chem. 94 (1990) 4991.Google Scholar
  21. [21]
    P. Lagarde, T. Murata, G. Vlaic, E. Freund, H. Dexpert and J.P. Bournonville, J. Catal. 84 (1983) 333.Google Scholar
  22. [22]
    R.W. Joyner, J.C.S. Faraday I, 76 (1980) 357.Google Scholar
  23. [23]
    M.J. Yacaman and J.M. Dominguez, J. Catal. 64 (1980) 213.Google Scholar
  24. [24]
    G. Larsen and G.L. Haller, Catal. Lett. 3 (1989) 103.Google Scholar
  25. [25]
    E.P. Kündig, D. McIntosh, M. Moskovits and G.A. Ozin, J. Am. Chem. Soc. 95 (1973) 7234.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1991

Authors and Affiliations

  • M. J. Kappers
    • 1
  • J. H. van der Maas
    • 1
  1. 1.Department of Analytical Molecule Spectrometry, Faculty of ChemistryUniversity of UtrechtTB UtrechtThe Netherlands

Personalised recommendations