Advertisement

Journal of Low Temperature Physics

, Volume 105, Issue 3–4, pp 383–388 | Cite as

Absolute Raman efficiencies as a tool to investigate HTc cuprates

  • P. Knoll
  • M. Mayer
  • W. Brenig
  • Ch. Waidacher
Spin Dynamics

Abstract

Absolute Raman efficiencies of phononic, electronic and spin excitations have been determined for doped and undoped HTc-cuprates. Anomalous temperature dependence of the Raman efficiency of the phononic 500cm−1 mode is explained as a change of the apical oxygen position. The normal state efficiency of the. ‘electronic’ background in YBa2Cu3O6.9 has been obtained for various scattering geometries for Raman shifts up to 8000cm−1. The 2-magnon contribution to the magnetic Raman signal of the undoped and lightly doped cuprates has been measured quantitatively and compared with recent calculations based on the 3-band-Hubbard model. Possible contributions of magnetic Raman scattering to the electronic B1g background of the superconducting samples are discussed.

PACS numbers

78.3O.Hv 74.72. Bk 71.10.Fd 75.30.Et 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    for a review see e.g.: C.Thomsen in:Light Scattering in Solids VI, Springer Verlag, p285 (1991)Google Scholar
  2. 2.
    T.P. Deveraux et al,Phys. Rev.Lett. 72 396 (1994)Google Scholar
  3. 3.
    A. Viruszek and J. Ruvalds,Phys.Rev.Lett. 67, 1657 (1991)Google Scholar
  4. 4.
    L.M. Calleja, H. Vogt, and M. Cardona,Philos.Mag.A 45, 239 (1982)Google Scholar
  5. 5.
    P. Knoll, R. Singer, and W. Kiefer,Appl.Spec. 44, 776 (1990)Google Scholar
  6. 6.
    E.T. Heyen et al.,Phys.Rev.B 45, 3037 (1992)Google Scholar
  7. 7.
    E.T. Heyen et al.,Phys.Rev.Lett. 65, 3048 (1990)Google Scholar
  8. 8.
    M. Pressl et al.J. of Raman Spec. Vol. 27, 343 (1996)Google Scholar
  9. 9.
    M.Cardona in:Light Scattering in Solids II, Springer Verlag, (1981)Google Scholar
  10. 10.
    P.Knoll and C.Ambrosch-Draxlin:Anharmonic properties of High-Tc-Cuprates, World Scientific,220 (1995) C.Ambrosch-Draxl et al,ibit, p.212Google Scholar
  11. 11.
    J.J. Caponi et al.,Europhys.Letters 3, 1301 (1987) A.W.Hewat et al,Solid State Commun. 64, 301 (1987) J.D.Jorgensen et al.,Phys.Rev.B 36, 3608 (1987)Google Scholar
  12. 12.
    M. Mayer et al.,Physica B194–196, 2107 (1994)Google Scholar
  13. 13.
    M.C. Krantz and M. Cardona,Phys.Rev.B 51, 5949 (1995)Google Scholar
  14. 14.
    M.V. Klein and S.B. Dierker,Phys.Rev.B 29, 4976 (1984)Google Scholar
  15. 15.
    P. Knoll et al.,Phys.Rev.B 42, 4842 (1990)Google Scholar
  16. 16.
    P.Knoll, M.Mayer, and W.Brenig, submittedGoogle Scholar
  17. 17.
    W. Brenig, Phys. Rep.251, 153 (1995)Google Scholar
  18. 18.
    P. Knoll et al. in:Phase. Separation in Cuprate Superconductors, Springer Verlag, pp. 157 (1994)Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • P. Knoll
    • 1
  • M. Mayer
    • 1
  • W. Brenig
    • 1
    • 2
  • Ch. Waidacher
    • 1
    • 3
  1. 1.Inst. f. Exp.physikUniv. GrazGrazAustria
  2. 2.Inst. f. Theor. PhysikUniv. KölnKölnGermany
  3. 3.Inst. f. Theor. PhysikUniv. GrazGrazAustria

Personalised recommendations