Journal of Bioenergetics and Biomembranes

, Volume 25, Issue 1, pp 7–10 | Cite as

Spectrum of mutations in cystic fibrosis

  • Garry R. Cutting
Article

Abstract

Cystic fibrosis (CF) is a disorder characterized by elevated sweat electrolytes and thick mucous secretions due to abnormal chloride permeability in epithelial tissues. The gene responsible for this disease, the CF transmembrane conductance regulator (CFTR) was identified by a positional cloning approach 3 years ago. Since that time, over two hundred mutations have been found in CFTR genes from affected individuals. Analysis of these disease-associated mutations has provided new insight into the etiology of this disease and into the mechanisms of epithelial electrolyte secretion.

Key words

CFTR gene ethnic distribution genotype/phenotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeliovich, D., Lavon, I. P., Lerer, I., Cohen, T., Springer, C., Avital, A., and Cutting, G. R. (1992). Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population,Am. J. Hum. Genet. 51, 951–956.Google Scholar
  2. Boat, T. F., Welsh, M. J., and Beaudet, A. L. (1989). Cystic Fibrosis. InThe Metabolic Basis of Inherited Disease (Scriver, C. L., Beaudet, A. L., Sly W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 2649–2680.Google Scholar
  3. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souzo, D. W., White, G. A., O'Riordan, C. R., and Smith, A. E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis,Cell 63, 827–834.Google Scholar
  4. Chu, C-S., Trapnell, B. C., Murtagh, J. J., Moss, J., Dalemans, W., Jallat, S., Mercenier, A., Pavirani, A., Lecocq, J-P., Cutting, G. R., Guggino, W. B., and Crystal, R. G. (1991). Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium,EMBO J. 10, 1355–1363.Google Scholar
  5. Collins, F. S. (1992). Cystic fibrosis: molecular biology and therapeutic implications,Science 256, 774–779.Google Scholar
  6. Cutting, G. R., Kasch, L. M., Rosenstein, B. J., Zielenski, J., Tsui, L-C., Antonarakis, S. E., and Kazazian, H. H. Jr (1990b). A cluster of Cystic Fibrosis mutations in the first nucleotide binding domain of the CFTR protein,Nature (London) 346, 366–369.Google Scholar
  7. Cutting, G. R., Kasch, L. M., Rosenstein, B. J., Tsui, L-C., Kazazian, H. H., Jr., and Antonarakis, S. E. (1990b). Two patients with cystic fibrosis, nonsense mutations in each cystic fibrosis gene, and mild pulmonary disease,New Eng. J. Med. 323, 1685–1689.Google Scholar
  8. Cutting, G. R., Curristin, S. M., Nash, E., Rosenstein, B. J., Lerer, I., Abeliovich, D., Hill, A., and Graham, C. (1992). Analysis of four diverse population groups indicates that a subset of cystic fibrosis mutations occurs in common among Caucasians,Am. J. Hum. Genet. 50, 1185–1194.Google Scholar
  9. Cystic Fibrosis Genetic Analysis Consortium (1990). Worldwide survey of the deltaF508 mutation—Report from the Cystic Fibrosis Genetic Analysis Consortium (CFGAC)Am. J. Hum. Genet. 47, 354–359.Google Scholar
  10. Dalemans, W., Barbry, P., Champigny, G., Jallat, S., Dott, K., Dreyer, D., Crystal, R. G., Pavirani, A., Lecocq, J-P., and Lazdunski, M. (1991). Altered chloride ion channel kinetics associated with the deltaF508 cystic fibrosis mutation,Nature 354, 526–528.Google Scholar
  11. Denning, G. M., Anderson, M. P., Amara, J. F., Marshall, J., Smith, A. E., and Welsh, M. J. (1992). Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive,Nature (London) 358, 761–764.Google Scholar
  12. Drumm, M. L., Wilkinson, D. J., Smit, L. S., Worrell, R. T., Strong, T. V., Frizzell, R. A., Dawson, D. C., and Collins, F. S. (1991). Chloride conductance expressed by deltaF508 and other mutant CFTRs inXenopus oocytes,Science 254, 1797–1799.Google Scholar
  13. European Working Group of CF Genetics (EWGCFG) (1990). Gradient of distribution in Europe of the major CF mutation and of its associated haplotype,Hum. Genet. 85, 436–441.Google Scholar
  14. Granell, J., Solera, J., Carrasco, S., and Molano, J. (1992). Identification of a nonframeshift 84-bp deletion in exon 13 of the cystic fibrosis gene,Am. J. Hum. Genet. 50, 1022–1026.Google Scholar
  15. Hamosh, A., and Cutting, G. R. (1992). Genotype/phenotype relationships in cystic fibrosis. InCurrent Topics in Cystic Fibrosis (Dodge, J. A., Brock, D. J. H., and Widdicombe, J. H., eds.), Wiley, Chichester, in press.Google Scholar
  16. Hamosh, A., Trapnell, B. C., Zeitlin, P. L., Montrose-Rafizadeh, C., Rosenstein, B. J., Crystal, R. G., and Cutting, G. R. (1991). Severe deficiency of CFTR mRNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis,J. Clin. Invest. 88, 1880–1885.Google Scholar
  17. Hamosh, A., King, T. M., Rosenstein, B. J., andet al. (1992a). Cystic fibrosis patients bearing the common missense mutation Gly → Asp at codon 551 and the deltaF508 are indistinguishable from deltaF508 homozygotes except for decreased risk of meconium ileus,Am. J. Hum. Genet. 51, 245–250.Google Scholar
  18. Hamosh, A., Rosenstein, B. J., and Cutting, G. R. (1992b). CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in respiratory epithelial cells,Hum. Mol. Genet. 1, 542–544.Google Scholar
  19. Kerem, B., Zielenski, J., Markiewicz, D., Bozon, D., Gazit, E., Yahaf, J., Kennedy, D., Riordan, J. R., Collins, F. S., Rommens, J. M., and Tsui, L-C. (1990). Identification of mutations in regions corresponding to the 2 putative nucleotide (ATP)-binding folds of the cystic fibrosis gene,Proc. Natl. Acad. Sci. USA 87, 8447–8451.Google Scholar
  20. Kerem, E., Corey, M., Kerem, B-S., Rommens, J., Markiewicz, D., Levison, H., Tsui, L-C., and Durie, P. (1990). The relation between genotype and phenotype in cystic fibrosis—analysis of the most common mutation (ΔF508),New Engl. J. Med. 323, 1517–1522.Google Scholar
  21. Knowles, M. R., Barnett, T. B., McConkie-Rosell, A., Sawyer, C., and Kahler, S. G. (1989). Mild cystic fibrosis in a consanguineous family,Ann. Int. Med. 110, 599–605.Google Scholar
  22. Kobayashi, K., Knowles, M. R., Boucher, R. C., O'Brien, W. E., and Beaudet, A. L. (1990). Benign missense variations in the cystic fibrosis gene,Am. J. Hum. Genet. 47, 611–615.Google Scholar
  23. Kristidis, P., Bozon, D., Corey, M., Markiewicz, D., Rommens, J., Tsui, L-C., and Durie, P. (1992). Genetic determination of exocrine pancreatic function in cystic fibrosis,Am. J. Hum. Genet. 50, 1178–1184.Google Scholar
  24. McIntosh, I., and Cutting, G. R. (1992). Cystic fibrosis transmembrane conductance regulator and the etiology and pathogenesis of cystic fibrosis,FASEB J. 6, 2775–2782.Google Scholar
  25. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J. L., Drumm, M. L., lannuzzi, M. C., Collins, F. S., and Tsui, L-C. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA,Science 245, 1066–1073.Google Scholar
  26. Rommens, J. M., lannuzzi, M. C., Kerem, B., Drumm, M. L., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J. R., Tsui, L-C., and Collins, F. S. (1989). Identification of the cystic fibrosis gene: chromosome walking and jumping,Science 245, 1059–1065.Google Scholar
  27. Rozen, R., De Braekeleer, M., Daigneault, J., Ferreira-Rajabi, L., Gerdes, M., Lamoureux, L., Aubin, G., Simard, F., Fujiwara, T. M., and Morgan, K. (1992). Cystic fibrosis mutations in French Canadians: Three CFTR mutations are relatively frequent in a Quebec population with an elevated incidence of cystic fibrosis,Am. J. Med. Genet. 42, 360–364.Google Scholar
  28. Sangiuolo, F., Novelli, G., Murru, S., and Dallapiccola, B. (1991). A serine-to-arginine (AGT-to-CGT) mutation in codon 549 of the CFTR gene in an Italian patient with severe cystic fibrosis,Genomics 9, 788–789.Google Scholar
  29. Shoshani, T., Augarten, A., Gazit, E., Bashan, N., Yahav, Y., Rivlin, Y., Tal, A., Seret, H., Yaar, L., Kerem, E., and Kerem, B-S. (1992). Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with severe disease presentation,Am. J. Hum. Genet. 50, 222–228.Google Scholar
  30. Strong, T. V., Smit, L. S., Turpin, S. V., Cole, J. L., Tom Hon, C., Markiewicz, D., Craig, M. W., Rosenow, E. C. III, Tsui, L-C., Knowles, M. R., and Collins, F. S. (1991). Cystic fibrosis gene mutation in two sisters with mild disease and normal sweat electrolyte levels,New Engl. J. Med. 325, 1630–1634.Google Scholar
  31. Zeitlin, P. L., Crawford, I., Lu, L., Woek, S., Cohen, M. E., Donowitz, M., Montrose, M. H., Hamosh, A., Cutting, G. R., Gruenert, D., Huganir, R., Maloney, P., and Guggino, W. B. (1992). CFTR protein expression in primary and cultured epithelia,Proc. Natl. Acad. Sci. USA 89, 344–347.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Garry R. Cutting
    • 1
  1. 1.Department of Pediatrics and Medicine and Center for Medical GeneticsJohns Hopkins University School of MedicineBaltimore

Personalised recommendations