Journal of Wood Science

, Volume 47, Issue 6, pp 502–506 | Cite as

Microwave pyrolysis of cellulosic materials for the production of anhydrosugars

  • Masakatsu Miura
  • Harumi Kaga
  • Takashi Yoshida
  • Koji Ando
Note

Abstract

Large-scale microwave rapid pyrolysis of cellulosic materials has been investigated. Levoglucosan (1,6-anhydro-β-d-glucopyranose) was obtained from a larch log as the main anhydrosugar in 2.6% yield on the basis of dry wood weight. This yield would be much higher than that obtainable by conventional pyrolysis in the largescale reaction. Levoglucosenone (1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose) was found to be produced in one-quarter the amount of levoglucosan. Other anhydrosugars, such as mannosan (1,6-anhydro-β-D-mannopyranose), galactosan (1,6-anhydro-β-d-galactopyranose), and xylosan (1,4-anhydro-α-d-xylopyranose), were also confirmed to be produced as minor components depending on the proportion of the monosaccharide content in the larch. When microwave pyrolysis of used papers and filter papers was performed, the yields of levoglucosan were about 6% and 12%, respectively, suggesting that a higher content of cellulose gives a larger amount of levoglucosan.

Key words

Microwave pyrolysis Cellulosic material Anhydrosugars Levoglucosan Mannosan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witczak ZJ (1994) Levoglucosenone and levoglucosan. ATL Press, Mount Prospect IL, USAGoogle Scholar
  2. 2.
    Uryu T (1993) Artificial polysaccharides and their biological activities. Prog Polym Sci 18:717–760CrossRefGoogle Scholar
  3. 3.
    Hattori K, Yoshida T, Nakashima H, Premanathan M, Aragaki R, Mimura T, Kaneko Y, Yamamoto N, Uryu T (1998) Synthesis of sulfated amino-polysaccharides having anti-HIV and blood anticoagulant activities. Carbohydr Res 312:1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshida T, Nakashima H, Yamamoto N, Uryu T (1993) Anti-AIDS virus activity in vitro of dextran sulfates by sulfation of synthetic and natural dextrans. Polym J 25:1069–1077CrossRefGoogle Scholar
  5. 5.
    Ruckel ER, Schuerch C (1966) Preparation of high polymers from 1,6-anhydro-2,3,4-tri-O-substitutedβ-d-glucopyranose. J Am Chem Soc 88:2606–2610CrossRefGoogle Scholar
  6. 6.
    Hattori K, Yoshida T, Uryu T (1997) Ring-opening polymerization of benzylated 1,6-anhydro-allose derivative having azido group and synthesis of 3-amino-3-deoxy-(1→ 6)-α-d-allopyranan. Macromol Chem Phys 198:29–39CrossRefGoogle Scholar
  7. 7.
    Kakuchi T, Kusuno A, Miura M, Kaga H (2000) Cationic ringopening polymerization of 1,6-anhydro-2,3,4-tri-O-allyl-β-d-glucopyranose as a convenient synthesis of dextran. Macromol Rapid Commun 21:1003–1006CrossRefGoogle Scholar
  8. 8.
    Tsuchiya Y, Sumi K (1970) Thermal decomposition products of cellulose. J Appl Polym Sci 14:2003–2013CrossRefGoogle Scholar
  9. 9.
    Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23:3525–3539CrossRefGoogle Scholar
  10. 10.
    Cerny M, Trnka T, Redlich H (1988) Praktishe Darstellung von 1,6-Anhydro-β-d-glucopyranose durch Vakuumpyrolyse von Stärke. Kriterien für den Bau eines Stahlreaktors. Carbohydr Res 174:349–353CrossRefGoogle Scholar
  11. 11.
    Montgomery EM, Richtmyer NK, Hudson CS (1942) The preparation and rearrangement of phenylglycosides. J Am Chem Soc 65:690–694CrossRefGoogle Scholar
  12. 12.
    Zemplen G, Csuros Z, Angyal S (1937) Über benzylierte derivate des lävoglucosans und der glucose. Chem Ber 70:1848–1856Google Scholar
  13. 13.
    Uryu T (1990) Polysaccharides. In Penczek S (ed) models of biopolymers by ring-opening polymerization. CRC Press, Boca Raton, pp 133–233Google Scholar
  14. 14.
    Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403–10432CrossRefGoogle Scholar
  15. 15.
    Strauss CR, Trainor RW (1995) Developments in microwaveassisted organic chemistry. Aust J Chem 48:1665–1692CrossRefGoogle Scholar
  16. 16.
    Allan GG, Krieger BB, Work DW (1979) Dielectric loss microwave degradation of polymers: cellulose. J Appl Polym Sci 25:1839–1859CrossRefGoogle Scholar
  17. 17.
    Straathof AJJ, Bekkum H, Kieboom APG (1988) Preparation of 1,6-anhydroglucose from (1 → 4)-glucans using microwave technology. Recl Trav Chim Pays Bas 107:647–648Google Scholar
  18. 18.
    Miura M, Tanaka S, Yokota Y, Ikeda K, Kumagai N, Ishibashi K, Ito S, Kaga H. Yamamoto M, Sasamori M (1995) Japanese patent 1928070Google Scholar
  19. 19.
    Miura M, Tanaka S, Yokota Y, Ikeda K, Sekiguchi I (1996) Japanese patent 2560223Google Scholar
  20. 20.
    Miura M, Kaga H, Tanaka S, Takahashi K, Ando K (2000) Rapid microwave pyrolysis of wood. J Chem Eng Jpn 33:299–302CrossRefGoogle Scholar
  21. 21.
    Miura M, Tanaka R (1996) Refinement of levoglucosan in wood pyroligneous liquor. Mokuzai Gakkaishi 42:318–321Google Scholar
  22. 22.
    Köll P, Deyhim S, Heyins K (1973) 1,5-Anhydropentofuranosen. 2. Darstellung der 1,5-Anhydropentofuranosen durch Vakuumpyrolyse der vier isomeren Pentosen. Chem Ber 106:3565–3570CrossRefGoogle Scholar
  23. 23.
    Miura M, Kaga H, Nishizaki H (1983) The pyrolysis of cellulosic materials and the analysis of levoglucosan from wood pyrolysis. Mokuzai Gakkaishi 29:756–762Google Scholar
  24. 24.
    Kloosterman M, Dees MJ, Marel GA, Boom JH (1985) Mild procedures for the synthesis of 1,6-anhydroaldohexopyranoses. Recl Trav Chim Pays Bas 104:116–119Google Scholar
  25. 25.
    Mokuzai-Kagaku Jikkensho (1989) (in Japanese) Nihon Mokuzai Gakkai Ed. Chugai Sangyo, Tokyo, pp 146–147Google Scholar

Copyright information

© The Japan Wood Research Society 2001

Authors and Affiliations

  • Masakatsu Miura
    • 1
  • Harumi Kaga
    • 1
  • Takashi Yoshida
    • 2
  • Koji Ando
    • 3
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
  2. 2.Polymer Science Department, Graduate School of ScienceHokkaido UniversitySapporoJapan
  3. 3.Department of Applied ChemistryMuroran Institute of TechnologyMuroranJapan

Personalised recommendations