Catalysis Letters

, Volume 21, Issue 1–2, pp 77–87 | Cite as

Evaluation of some cobalt and nickel based perovskites prepared by freeze-drying as combustion catalysts

  • J. Kirchnerova
  • D. Klvana
  • J. Vaillancourt
  • J. Chaouki
Article

Abstract

A series of cobalt and nickel based perovskite type catalysts with high specific surface area (8–20 m2 /g) was prepared by spray-freezing/freeze-drying method. The catalytic activity of all samples in methane combustion was evaluated by measuring the light-off temperature, the conversion at 823 K and the temperature of the end of the reaction. The experimental data suggest higher activity than reported in literature for similar or other perovskites, and confirm its strong dependence on the specific surface area. Among eleven tested catalysts, including seven new compositions four of which showed excellent activity, La0.66Sr0.34Ni0.3Co0.7O3 was the best performing.

Keywords

Perovskite catalysts methane combustion La0.66Sr0.34Ni0.3 Co0.7O3 freeze-drying 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.E. Voecks, 3rd Workshop on Catalytic Combustion (1977).Google Scholar
  2. [2]
    R. Prasad, L.A. Kennedy and E. Ruckenstein, Catal. Rev.-Sci. Eng. 26 (1984) 1.Google Scholar
  3. [3]
    D.L. Trimm, Appl. Catal. 7 (1984) 249.Google Scholar
  4. [4]
    D.L. Trimm, C.-W. Lam, Chem. Eng. Sci. 35 (1980) 1405.Google Scholar
  5. [5]
    D.L. Trimm, C.-W. Lam, Chem. Eng. Sci. 35 (1980) 1731.Google Scholar
  6. [6]
    R. Prasad, L. A. Kennedy and E. Ruckenstein, Comb. Sci. Technol. 22 (1980) 271.Google Scholar
  7. [7]
    D.B. Meadowcroft, Nature 226 (1970) 847.Google Scholar
  8. [8]
    W.F. Libby, Science 171 (1971) 499.Google Scholar
  9. [9]
    R.J.H. Voorhoeve, D.W. Johnson Jr., J.P. Remeika and P.K. Gallagher, Science 195 (1977) 4281.Google Scholar
  10. [10]
    L.G. Tejuca, J.L.G. Fierro and J.M.D. Tascon, in:Advances in Catalysis, Vol. 36, eds. D.D. Eley, H. Pines and P.B. Weisz (Academic Press, New York, 1989) p. 237.Google Scholar
  11. [11]
    N. Yamazoe and Y. Teraoka, Catal. Today 8 (1990) 175.Google Scholar
  12. [12]
    T. Nakamura, M. Misono, T. Uchijima and Y. Yoneda, Nippon Kagaku Kaishi (1980) 1679.Google Scholar
  13. [13]
    T. Nakamura, M. Misono and Y. Yoneda, J. Catal. 83 (1983) 151.Google Scholar
  14. [14]
    H. Arai, T. Yamada, K. Eguchi and T. Seiyama, Appl. Catal. 26 (1986) 265.Google Scholar
  15. [15]
    K. Tabata, I. Matsumoto and S. Kohiki, J. Mater. Sci. 22 (1987) 1882.Google Scholar
  16. [16]
    K. Tanaka, T. Nishida and S. Imamura, Chem. Express 22 (1987) 756.Google Scholar
  17. [17]
    Z. Kaiji, L. Jian and B. Yingli, Catal. Lett. 1 (1988) 299.Google Scholar
  18. [18]
    H.M. Zhang, Y.Teraoka and N. Yamazoe, Nippon Kagaku Kaishi (1988) 272.Google Scholar
  19. [19]
    Y. Teraota, H.M. Zhang and N. Yamazoe,Proc. 9th Int. Congr. on Catalysis, Vol. 4, eds. M.J. Phillips and M. Ternan (Chem. Inst. of Canada, Ottawa, 1988) p. 1984.Google Scholar
  20. [20]
    J.G. McCarty, M. Quinlan and H. Wise,Proc. 9th Int. Congr. on Catalysis, Vol. 4, eds. M.J. Phillips and M. Ternan (Chem. Inst. of Canada, Ottawa, 1988) p. 1818.Google Scholar
  21. [21]
    J.G. McCarty and H. Wise, Catal. Today 8 (1990) 231.Google Scholar
  22. [22]
    H.M. Zhang, Y. Shimizu, Y. Teraoka, N. Miura and N. Yamazoe, J. Catal. 121 (1990) 432.Google Scholar
  23. [23]
    B. de Collongue, E. Garbowski and H. Primet, J. Chem. Soc. Faraday Trans. 87 (1991) 2493.Google Scholar
  24. [24]
    C.B. Alcock and J.J. Carberry, Solid State Ionics 50 (1992) 197.Google Scholar
  25. [25]
    Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura and N. Yamazoe, Solid State Ionics 48 (1991) 207.Google Scholar
  26. [26]
    J.O'M. Bockris and T.O. Tagawa, J. Electrochem.Soc. 131 (1984) 290.Google Scholar
  27. [27]
    H.M. Zhang, Y. Teraoka and N. Yamazoe, J. Mater. Sci. Lett. 8 (1989) 995.Google Scholar
  28. [28]
    Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura and N. Yamazoe, Solid State Ionics 48 (1991) 207.Google Scholar
  29. [29]
    D.W. Johnson Jr., P.K. Gallagher, F. Schrey and W.W. Rhodes, Am. Ceram. Soc. Bull. 55 (1976) 589.Google Scholar
  30. [30]
    A.C.C. Tseung and H.L. Bevan, J. Mater. Sci. 5 (1970) 604.Google Scholar
  31. [31]
    J. Kirchnerova and D. Klvana, in:Hydrogen Energy Progress IX, Vol. 1, Proc. 9th World Hydrogen Energy Conf., Paris, June 1992 (1992) p. 485–493.Google Scholar
  32. [32]
    J. Kirchnerova and D. Klvana, J. Mater. Sci, to be submitted.Google Scholar
  33. [33]
    J. Kirchnerova, M-C. Caplette and D. Klvana, Int. J. Hydrogen Energy, to be submitted.Google Scholar
  34. [34]
    T. Nakamura, G. Petzow and L.J. Gauckler, Mater. Res. Bull. 14 (1979) 649.Google Scholar
  35. [35]
    J.M. Herrmann, in:Les Techniques Physiques d'Etude des Catalyseurs, eds. B. Imelik and J.C. Védrine (Edition Technip, Paris, 1988) ch. 22.Google Scholar
  36. [36]
    K.R. Barnard, K. Foger, T.W. Turney and R.D. Williams, J. Catal. 125 (1990) 265.Google Scholar
  37. [37]
    L. Wachowski, Surf. Coat. Technol. 29 (1986) 303.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • J. Kirchnerova
    • 1
  • D. Klvana
    • 1
  • J. Vaillancourt
    • 1
  • J. Chaouki
    • 1
  1. 1.Department of Chemical EngineeringEcole PolytechniqueMontrealCanada

Personalised recommendations