Journal of Wood Science

, 48:536 | Cite as

Survey and enzymatic formation of lignans ofAnthriscus sylvestris

  • Shiro Suzuki
  • Norikazu Sakakibara
  • Toshiaki Umezawa
  • Mikio Shimada
Note

Abstract

Gas chromatography — mass spectrometry analysis of the β-glucosidase-treated MeOH extracts ofAnthriscus sylvestris showed, based on comparison of the mass spectra and retention times with those of authentic samples, the presence of lignans, yatein, secoisolariciresinol, lariciresinol, matairesinol, hinokinin, and pluviatolide. The existence of small amounts of bursehernin was suggested by mass chromatography. In addition, nemerosin and deoxypodophyllotoxin were tentatively identified by comparing the mass spectra with those reported in the literature. Enzyme preparations fromA. sylvestris catalyzed the formation of secoisolariciresinol and lariciresinol from coniferyl alcohol. Furthermore, the enzyme preparation catalyzed the formation of lariciresinol from (±)-pinoresinols and the formation of secoisolariciresinol from (±)-lariciresinols. Thus, pinoresinol/lariciresinol reductase (PLR) activity was detected. Chiral high-performance liquid chromatography analysis showed selective formation of (+)-lariciresinol and (−)-secoisolariciresinol from (±)pinoresinols with theA. sylvestris PLR preparation, indicating that the stereochemical property ofA. sylvestris PLR-catalyzed reduction was similar to those ofForsythia PLR andArctium lappa ripening seed PLR.

Key words

Lignan Anthriscus sylvestris Biosynthesis 

References

  1. 1.
    Umezawa T, Okunishi T, Shimada M (1997) Stereochemical diversity in lignan biosynthesis. Wood Res 84:62–75Google Scholar
  2. 2.
    Umezawa T (2001) Biosynthesis of lignans and related phenyl-propanoid compounds (in Japanese). Regul Plant Growth Dev 36:57–67Google Scholar
  3. 3.
    Umezawa T (1997) Lignans. In: Higuchi T (ed) Biochemistry and molecular biology of wood. Springer-Verlag, Berlin, pp 181–194Google Scholar
  4. 4.
    MacRae WD, Towers GHN (1984) Biological activities of lignans. Phytochemistry 23:1207–1220CrossRefGoogle Scholar
  5. 5.
    Umezawa T (1996) Biological activity and biosynthesis of lignans (in Japanese). Mokuzai Gakkaishi 42:911–920Google Scholar
  6. 6.
    Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Sackett D (1993) Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 59:163–223PubMedCrossRefGoogle Scholar
  8. 8.
    Canel C, Moraes RM, Dayan FE, Ferreira D (2000) Molecules of interest: podophyllotoxin. Phytochemistry 54:115–120PubMedCrossRefGoogle Scholar
  9. 9.
    Takaku N, Choi D-H, Mikame K, Okunishi T, Suzuki S, Ohashi H, Umezawa T, Shimada M (2001) Lignans ofChamaecyparis obtusa. J Wood Sci 47:476–482CrossRefGoogle Scholar
  10. 10.
    Cragg G, Boyd M, Khanna R, Newman D, Sausville E (1999) Natural product drug discovery and development: the United States National Cancer Institute role. In: Romeo J (ed) Recent advances in phytochemistry. Kluwer Academic/Plenum, New York, pp 1–29Google Scholar
  11. 11.
    Konuklugil B (1996) Aryltetralin lignans from genusLinum. Fitoterapia 67:379–381Google Scholar
  12. 12.
    Broomhead AJ, Dewick PM (1990) Aryltetralin lignans fromLinum flavum andLinum capitatum. Phytochemistry 29:3839–3844CrossRefGoogle Scholar
  13. 13.
    Noguchi T, Kawanami M (1940) The active components of the Umbelliferae. X. Components ofAnthriscus sylvestris (in Japanese). Yakugaku Zasshi 60:629–636Google Scholar
  14. 14.
    Kozawa M, Morita N, Hata K (1978) Chemical components of the roots ofAnthriscus sylvestris Hoffm. I. Structures of an acyloxycarboxylic acid and a new phenylpropanoidester, anthriscusin (in Japanese). Yakugaku Zasshi 98:1486–1490PubMedGoogle Scholar
  15. 15.
    Kurihata T, Kikuchi M, Suzuki S, Hisamichi S (1978) Studies of the constituents ofAnthriscus sylvestris HOFFM. I. On the components of the radix (in Japanese). Yakugaku Zasshi 98:1586–1591Google Scholar
  16. 16.
    Turabelidze DG, Mikaya GA, Kemertelidze P, Vul'son NS (1982) Lignan lactones from the roots of wild chervilAnthriscus nemerosa (Bieb.) Spreng. Sov J Bioorg Chem 8:374–379Google Scholar
  17. 17.
    Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M, Mori M (1998) Antiproliferative constituents in Umbelliferae plants. IV. Constituents in the fruits ofAnthriscus sylvestris HOFFM. Chem Pharm Bull (Tokyo) 46:875–878Google Scholar
  18. 18.
    Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M, Mori M (1998) Antiproliferative constituents in Umbelliferae plants. III. Constituents in the root and the ground part ofAnthriscus sylvestris HOFFM. Chem Pharm Bull (Tokyo) 46:871–874Google Scholar
  19. 19.
    Koh D, Lim Y (1999) Anti-allergic activities of anthricin and its structure elucidation. Agric Chem Biotechnol 42:208–209Google Scholar
  20. 20.
    Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis inLinum flavum andPodophyllum peltatum. Phytochemistry 55:537–549PubMedCrossRefGoogle Scholar
  21. 21.
    Weiss SG, Tin-Wa M, Perdue RE Jr, Farnsworth NR (1975) Potential anticancer agents. II. Antitumor and cytotoxic lignans fromLinum album (Linaceae). J Pharm Sci 64:95–98PubMedCrossRefGoogle Scholar
  22. 22.
    Lim YH, Leem MJ, Shin DH, Chang HB, Hong SW, Moon EY, Lee DK, Yoon SJ, Woo WS (1999) Cytotoxic constituents from the roots ofAnthriscus Sylvestris. Arch Pharm Res 22:208–212PubMedGoogle Scholar
  23. 23.
    Jackson DE, Dewick PM (1984) Biosynthesis ofPodophyllum lignans. II. Interconversions of aryltetralin lignans inPodophyllum hexandrum. Phytochemistry 23:1037–1042CrossRefGoogle Scholar
  24. 24.
    Kamil WM, Dewick PM (1986) Biosynthetic relationship of aryltetralinlactone lignans to dibenzylbutyrolactone lignans. Phytochemistry 25:2093–2102CrossRefGoogle Scholar
  25. 25.
    Erdtman H, Harmatha J (1979) Phenolic and terpenoid heartwood constituents ofLibocedrus yateensis. Phytochemistry 18:1495–1500CrossRefGoogle Scholar
  26. 26.
    Suzuki S, Umezawa T, Shimada M (1998) Stereochemical difference in secoisolariciresinol formation between cell-free extracts from petioles and from ripening seeds ofArctium lappa L. Biosci Biotechnol Biochem 62:1468–1470CrossRefGoogle Scholar
  27. 27.
    Umezawa T, Kuroda H, Isohata T, Higuchi T, Shimada M (1994) Enantioselective lignan synthesis by cell-free extracts ofForsythia koreana. Biosci Biotechnol Biochem 58:230–234CrossRefGoogle Scholar
  28. 28.
    Okunishi T, Umezawa T, Shimada M (2000) Enantiomeric compositions and biosynthesis ofWikstroemia sikokiana lignans. J Wood Sci 46:234–242CrossRefGoogle Scholar
  29. 29.
    Umezawa T, Shimada M (1994) Syntheses of (+-)-lariciresinols. Mokuzai Gakkaishi 40:231–235Google Scholar
  30. 30.
    Umezawa T, Isohata T, Kuroda H, Higuchi T, Shimada M (1992) Biosynthesis of lignans. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry. Uni Publishing. Tokyo, pp 507–512Google Scholar
  31. 31.
    Okunishi T, Umezawa T, Shimada M (2001) Isolation and enzymatic formation of lignans ofDaphne genkwa andDaphne odora. J Wood Sci 47:383–388CrossRefGoogle Scholar
  32. 32.
    Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  33. 33.
    Pelter A (1968) The mass spectra of some lignans of the 1-phenyl-1,2,3,4,-tetrahydronaphthalene series. J Chem Soc (c):74–79Google Scholar
  34. 34.
    Umezawa T, Shimada M (1996) Formation of the lignan (+)-secoisolariciresinol by cell-free extracts ofArctium lappa. Biosci Biotechnol Biochem 60:736–737Google Scholar
  35. 35.
    Chu A, Dinkova A, Davin LB, Bedgar DL, Lewis NG (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases fromForsythia intermedia. J Biol Chem 268:27026–27033PubMedGoogle Scholar
  36. 36.
    Katayama T, Davin LB, Chu A, Lewis NG (1993) Novel benzylic ether reductions in lignan biogenesis inForsythia intermedia. Phytochemistry 33:581–591CrossRefGoogle Scholar
  37. 37.
    Umezawa T, Davin LB, Lewis NG (1990) Formation of the lignan, (−)-secoisolariciresinol, by cell free extracts ofForsythia intermedia. Biochem Biophys Res Commun 171:1008–1014PubMedCrossRefGoogle Scholar
  38. 38.
    Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans (−)-secoisolariciresinol and (−)-matairesinol withForsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217PubMedGoogle Scholar
  39. 39.
    Katayama T, Davin LB, Lewis NG (1992) An extraordinary accumulation of (−)-pinoresinol in cell-free extracts ofForsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry 31:3875–3881PubMedCrossRefGoogle Scholar
  40. 40.
    Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. In: Sankawa U (ed) Comprehensive natural products chemistry, vol 1. Eisevier Science, Oxford, pp 639–712Google Scholar
  41. 41.
    Broomhead AJ, Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1991) Matairesinol as precursor ofPodophyllum lignans. Phytochemistry 30:1489–1492CrossRefGoogle Scholar

Copyright information

© The Japan Wood Research Society 2002

Authors and Affiliations

  • Shiro Suzuki
    • 1
  • Norikazu Sakakibara
    • 1
  • Toshiaki Umezawa
    • 1
  • Mikio Shimada
    • 1
  1. 1.Wood Research InstituteKyoto UniversityKyotoJapan

Personalised recommendations