General Relativity and Gravitation

, Volume 7, Issue 6, pp 535–547 | Cite as

Particle creation from vacuum in homogeneous isotropic models of the Universe

  • A. A. Grib
  • S. G. Mamayev
  • V. M. Mostepanenko
Article

Abstract

Particle creation in Friedman models of the open, closed, and quasi-Euclidean types is considered. The new method of calculation of probabilities of pair creation from vacuum by nonstationary external gravitational field is developed. This method is based on the diagonalization of the energy operator with the help of time-dependent canonical transformations. Finite numerical estimates for the densities of created particles and antiparticles are obtained both for early and modern stages of the evolution of the Universe.

Keywords

Differential Geometry Gravitational Field Numerical Estimate Energy Operator Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanenko, D. D. (1947).Usp. Fiz. Nauk,32, 149; Ivanenko, D. D., and Sokolov, A. A. (1947).Vestn. Mosk. Univ. Gosudarstvennogo, No. 8, 103.Google Scholar
  2. 2.
    Wheeler, J. A. (1960). InRend. Sc. Int. Fis. Enrico Fermi, Corso XI, Bologna.Google Scholar
  3. 3.
    Parker, L. (1969).Phys. Rev.,183, 1057; (1971).Phys. Rev. D,3, 346; (1972).Phys. Rev. D,5, 2905; (1973).Phys. Rev. D,7, 976.Google Scholar
  4. 4.
    Imamura, T. (1960).Phys. Rev.,118, 1430.Google Scholar
  5. 5.
    Fulling, S. A. (1973).Phys. Rev. D,7, 2850.Google Scholar
  6. 6.
    Sexl, R., and Urbantke, H. (1969).Phys. Rev.,179, 1247.Google Scholar
  7. 7.
    Zel'dovich, Ya. B., and Starobinsky, A. A. (1971).Zh. Eksp. Teor. Fiz.,61, 2161.Google Scholar
  8. 8.
    Audretsch, J. (1973).Nuovo Cimento,17B, 284.Google Scholar
  9. 9.
    Zel'dovich, Ya. B., Lukash, V. N., and Starobinsky, A. A. (1974). IPM Preprint No. 23, Moscow; Lukash. V. N., and Starobinsky, A. A. (1974).Zh. Eksp. Tear. Fiz.,66, 1515.Google Scholar
  10. 10.
    Grib, A. A., and Mamayev, S. G. (1969).Yad. Fiz.,10, 1276; (1971).Yad. Fiz.,14, 800; (1970). InProc. 15th Int. Conf. High Energy Phys.,2,809, Kiev.Google Scholar
  11. 11.
    Grib, A. A., Levitsky, B. A., and Mostepanenko, V. M. (1974).Teor. Mat. Fiz.,19, 59.Google Scholar
  12. 12.
    Schwinger, J. (1951). Phys. Rev.,82, 664.Google Scholar
  13. 13.
    Brezin, E., and Itzykson, C. (1971).Phys. Rev. D.,3, 618.Google Scholar
  14. 14.
    Perelomov, A. M. (1972).Phys. Lett.,39A., 165, 353.Google Scholar
  15. 15.
    Grib, A. A., Mostepanenko, V. M., and Frolov, V. M. (1972).Teor. Mat. Fiz.,13, 377.Google Scholar
  16. 16.
    Nikishov, A. I. (1970).Nucl. Phys.,21B, 346.Google Scholar
  17. 17.
    Omnes, R. (1972).Phys. Reports,30, 3.Google Scholar
  18. 18.
    Labonté, G., and Capri, A. Z. (1972).Nuovo Cimento,10B, 583.Google Scholar
  19. 19.
    Neumann, J. von (1955).Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey).Google Scholar
  20. 20.
    Fock, V. A. (1959).Theory of Space, Time and Gravitation (Pergamon Press, London).Google Scholar
  21. 21.
    Penrose, R. (1964). InRelativity, Groups and Topology (Gordon & Breach, New York).Google Scholar
  22. 22.
    Chernikov, N. A., and Tagirov, E. A. (1968).Ann. Inst. Henri Poincaré,9A, 109.Google Scholar
  23. 23.
    Bogoljubov, N. N. (1958).Dokl. Akad. Nauk. SSSR,119, 224.Google Scholar
  24. 24.
    Stanjukovich, K. P. (1965).Gravitational Field and Elementary Particles (Russian) (Nauka, Moscow).Google Scholar
  25. 25.
    Miller, J. C. P. (1955).Tables of Weber Parabolic Cylinder Functions (Her Majesty's Stationery Office, London).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. A. Grib
    • 1
    • 2
  • S. G. Mamayev
    • 1
    • 2
  • V. M. Mostepanenko
    • 1
    • 2
  1. 1.Department of Theoretical PhysicsLeningrad State UniversityLeningradUSSR
  2. 2.Department of MathematicsLeningrad Electrotechnical InstituteLeningradUSSR

Personalised recommendations